LID VAN

i

Strawberry Prediction System

Academic Year 2022-2023

Campus Geel, Kleinhoefstraat 4, BE-2440 Geel

H1: CodeFarm

Frederik Crauwels, Princewell Baffour Awuah, Derre Evers,

Jordy Boons, Bryant Suiskens, Mohamed Azish

THOMAS

MORC

& 4 VIto

CODEFARM

o

1 TABLE OF CONTENTS

The table of contents provides an overview of our project plan.

1 TABLE OF CONTENTS....cociturumimmrerererarassmsasasesasasassnsnsasasasnsasansns 4
2 INTRODUCTION ..c.cucimimrererararassnsasasasararassssssasasasssasasansnsnsasannnasas 5
2.1 L0 0] 5 8 o= 5
2.2 Expectations from the report........ccccvciimiriicinernsssnn s s snanass 5
3 REQUIREMENTS .cciuturumimraranerararansnsasasasarassssnsasasasasasassnsnsasanannnas 6
3.1 Use cases and use-case diagram......cccuvmverimsersmsassnsassnsassnsassnsass 6
3.1.1 Web appliCationvee i 6
3.1.2 Mobile appliCationcoeii e 13
3.2 ERD: Entity Relationship Diagramc.ccccremveramseramsesansessnsassnass 16
3.2.1 MUSE-NAVES .t 16
3.2.2 Changes during developmentooeiiiiiiiii e 17
3.3 PBS: Product Breakdown Structure.......c.ccvcvimirumiermsernsasnass 18
3.4 PFD: Product FIow Diagramccciceverumseramseransesansassnsassnsassnsass 20
3.4.1 Progressive Web Application (PWA) ... 22
3.5 Solution decCiSioN....cicviiiriraramrara s s s s s s s s ra s narnnns 24
3.5.1 O 17 1 5 PP 24
3.5.2 ArChITECIUIE Lot 31
3.5.3 Google cloud platform........oeiiiiii 33
3.5.4 FAN 1 o T = = PP P PP 47
3.5.5 APPIICAION Lt e 53
4 CONCLUSIONcieierararansnsaraseserarassssssasssssasassssssssasssssssassnsnsasass 55
5 BIBLIOGRAPHYcicicieiiimimimsenene s sanssasa s s s s mnnnananasasnnnss 56

| & F4~Vito

CODEFARM

o

2 INTRODUCTION

Outlining the expectations and contextualizing our project plan. This file holds all
the necessary information for you to understand our thought process and how
you can re-deploy the application in its entirety, as well as provide additional
context regarding certain processes.

2.1 Context

The goal of this report is to provide you with a thorough overview and
explanation of all the features provided in our proof of concept (PoC). This
report will help you in utilizing the same code and deploy the entire application
yourself. Each separate deployment will be included in this documentation in
order to provide further information about each stack / deployment.

As of now we have three specific areas of implementation:

o DevOps: this includes everything related to security, APIs and CI/CD.

e AI: this includes everything related to Artificial Intelligence.

e Application / web development: this includes everything related to
the front-end of the website.

2.2 Expectations from the report

At the end of this report you should be able to understand how each specific
area of implementation works and functions within the overall picture of the
architectural design. You should be able to fully re-deploy the application. It is
also important to understand the basics of the application which is our starting
point in the requirements chapter.

¢ Requirements: the requirements will guide you through our early
thought process and starting position when development started. Here
you can find a variety of documents: use-cases, ERD and PBS. They
should give you a good understanding of how the end-product should
work.

e Proof of concept: the proof of concept will guide you through each
separate stack. This part will provide more explanation on how to use
each stack separately specifically: setup, installation, coding guidance,
usage,... At the end of this chapter you should have a thorough
understanding of each separate component and how these work together
via architectural drawings.

e Conclusion: at the end a conclusion will be provided outlining our
overall end-result (PoC) and a brief guidance on how to move this project
further with additional features, for example.

¢ Bibliography: the bibliography will provide you with additional sources
used in the investigation and deployment of our PoC.

® 7~ Vito

CODEFARM

-

3 REQUIREMENTS

Investigative information providing insights in our thought process.

3.1 Use cases and use-case diagram

Use cases define a specific scenario in which the application user(s) will interact
with a piece of software. This indicates how useful an application can be to an
end-user. Every single interaction with our application is primarily analysed in
order to know how different users will be handling our application.

The use-case diagram is a summary of every single use case we defined. All the
users and use cases are visualised in one, single picture.

As we will be building two applications: web application and a mobile
application, we have divided the uses cases amongst two application
frameworks.

3.1.1 Web application

Below you can notice the use-case diagram for the web application
summarizing every single use-case in one, single image:

Strawberry Application

> ¢ | e D
-_— | -
-

-7

I— . «extends
System user \

-o

Manage own data

N

Farmer

7@ Create and manage users
Create and manage fields

E :_i Chat with other users

Advisor

Upload pictures >——— | ,f)\
| : Database

. wextend»
’___.—-——_'_'_.-7_._'__—'_'- k‘"\‘_
“a

Fieldworker Define location

3.1.1.1 System User

These use cases will focus on the system user.

Use case: Login

Actor
Functionality
Precondition

Normal flow

Alternatives (not mandatory)

Use case: Reset Password

Actor

Functionality

Precondition

Normal flow

Alternatives (not mandatory)

Description
System User

As a system user, I can login.

/

The actor is presented with a
username and password field. The
actor fills in his credentials to login.
When the credentials are correct the
system shows the home screen.

Wrong password: The system gives
an error message. The actor can try
again to login.

Forgot password: The actor can reset
his password.

Description
System User

As a system user, I can reset my
password.

An account has been created.
The actor says he want to reset his
password. The system gives a form to

reset a password. The actor can
change his password.

/

fVItO

fwto

CODEFARM

o

Use case: Manage own data

Description
Actor System User
Functionality As a System User, I can manage my
own data.
Precondition The actor is logged in
Normal flow The actor can change the filled-in
specifications regarding their e-mail,
username, ...
Alternatives (not mandatory) /
3.1.1.2 Admin
These use cases will focus on the admin.
Use case: Manage data
Description
Actor Admin
Functionality As an admin, I can manage data.
Precondition The actor is logged in.
Normal flow The actor can edit or remove data
(pictures, field data, strawberry
data).

Alternatives (not mandatory) /

& 4 VIto

CODEFARM

o

Use case: Create and manage users

Description

Actor Farmer

Functionality As a farmer, I can create and manage
users

Precondition Farmer is logged in.

Normal flow The system shows an interface where
the actor can create, edit and delete
users.

Alternatives (not mandatory) /

3.1.1.3 Farmer
These use cases will focus on the farmer.

Use case: Manage data

Description

Actor Farmer

Functionality As a farmer, I can access data of my
field.

Precondition Farmer is logged in.

Normal flow The actor can edit or remove data
(pictures, field data, strawberry
data).

Alternatives (not mandatory) /

Use case: Create and manage users
Description

Actor Farmer

Functionality As a farmer, I can create and manage
users

Precondition Farmer is logged in.

Normal flow The system shows an interface where
the actor can create, edit and delete
users.

Alternatives (not mandatory) /

& 4 VIto

CODEFARM

o

Use case: Create and manage fields

Description

Actor Farmer

Functionality As a farmer, I can create and manage
fields

Precondition Farmer is logged in.

Normal flow The system presents the farmer with

a list of their fields. The farmer can
create a new field or update details of
an existing field. The system presents
the actor with an updated field list.

Alternatives (not mandatory) /

Use case: Chat with other users

Description
Actor Farmer
Functionality As a farmer, I can send and receive

messages from other users
Precondition Farmer is logged in.

Normal flow The system presents the actor with a
list of messages if there are any. The
actor can select a message and
respond to it. The actor can start a
new chat by selecting a recipient.

Alternatives (not mandatory) /

& 4 VIto

CODEFARM

o

Use case: Upload pictures

Description
Actor Farmer
Functionality As a farmer, I can upload pictures
Precondition Farmer is logged in.
Normal flow The system shows a list of picture

types. The actor selects a type. The
system shows the page where the
actor can upload a picture with a list
of fields. The actor uploads a picture
and selects a field. The system
uploads the data to the database.

Alternatives (not mandatory) /

3.1.1.4 Field worker
These use cases will focus on the field worker.

Use case: Upload pictures

Description

Actor Field worker

Functionality As a field worker, I can upload
pictures.

Precondition Farmer gave access to field worker
(login).

Normal flow The system shows a list of picture

types. The actor selects a type. The
system shows the page where the
actor can upload a picture with a list
of fields. The actor uploads a picture
and selects a field. The system
uploads the data to the database.

Alternatives (not mandatory) Upload pictures directly through the
mobile application as this will reduce
the chance of having not sufficient (or
correct) meta data.

CODEFARM

3.1.1.5 Advisor

fwto

These use cases will focus on the advisor.

Use case: Chat with other users

Actor

Functionality

Precondition

Normal flow

Alternatives (not mandatory)

Use case: Manage data

Actor
Functionality
Precondition

Normal flow

Alternatives (not mandatory)

Description
Advisor

As an advisor, I can chat with other
users.

Advisor created their own account.
The system presents the actor with a
list of messages if there are any. The
actor can select a message and

respond to it. The actor can start a
new chat by selecting a recipient.

/

Description
Advisor

As an Advisor, I can access data of
my field.

Actor is logged in.
The actor can edit or remove data

(pictures, field data, strawberry
data).

/

& L1

CODEFARM

-

3.1.2 Mobile application

Below you can notice the use-case diagram for the mobile application
summarizing every single use-case in one, single image:

% Strawberry Mobile Application
— > —

Reset password
System user \

\ : «extends

Farmer
Take pictures

Fieldworker

3.1.2.1 System User
These use cases will focus on the system user.

Use case: Login

Description
Actor System User
Functionality As a system user, I can login.
Precondition /
Normal flow The actor is presented with a

username and password field. The
actor fills in his credentials to login.
When the credentials are correct the
system shows the home screen.

Alternatives (not mandatory) Wrong password: The system gives
an error message. The actor can try
again to login.

Forgot password: The actor can reset
his password.

Use case: Reset Password

Actor

Functionality

Precondition

Normal flow

Alternatives (not mandatory)

Use case: Manage own data

Actor

Functionality

Precondition

Normal flow

Alternatives (not mandatory)

Description
System User

As a system user, I can reset my
password.

An account has been created.
The actor says he want to reset his
password. The system gives a form to

reset a password. The actor can
change his password.

/

Description
System User

As a System User, I can manage my
own data.

The actor is logged in.
The actor can change the filled-in

specifications regarding their e-mail,
username,...

fwto

&

CODEFARM

o

3.1.2.2 Field Worker

These use cases will focus on the field worker.

Use case: Upload pictures

Actor
Functionality

Precondition

Normal flow

Alternatives (not mandatory)

Description
Field worker

As a field worker, I can upload
pictures.

Farmer gave access to field worker
(login).

The system shows a list of picture
types. The actor selects a type. The
system shows the page where the
actor can upload a picture with a list
of fields. The actor uploads a picture
and selects a field. The system
uploads the data to the database.

Upload pictures directly through the
mobile application as this will reduce
the chance of having not sufficient (or
correct) meta data.

110

& . 111

CODEFARM

-

3.2 ERD: Entity Relationship Diagram

UML (Unified Modelling Language) is a modelling language between a variety of
tables. This diagram shows you how our database will be drawn in a high-level
overview. This diagram will therefore be used to create our database tables.
This specific diagram is called an ERD: Entity Relationship Diagram, providing a
thorough overview of the data and tables we will be utilizing in the realization
phase.

User

iD: PK int 0.* RL 1.1 UserType
userTypelD: FK1 NMNA int iD- PKint

name: AK NNA string P

lastName: AK NNA string name: AK NNA string
email: NNA sfring

1.1
R2 -
FieldPart
0. iD: PK int PictureType
partLong: NNA string iD: PK int
FarmUser partLat: NNA string name: AK NNA string
- fieldlD: FK5 NNA int
userlD: PK FK2 NMA int
farmiD: PK FK3 NNA int 1.1
O“*
R7
G”*
R3 B 0.7
1.1 1.1 Picture
iD: PKint
Farm Field date: AK1 NMNA date
iD: PK int 1.1 R4 0.* - 0.1 0.* |picLong: AK1 NA string
name: AK NNA string iD: PKint] picLat: AK1 NA string
country: NNA string description: AK NNA string R6 url: NNA string
city: NNA string farmID: FK4 NNA int flowerCount: NA int
postalCode: NNA int fieldlD; FK6 NA int
pictureTypelD: FK7 NNA int

3.2.1 Must-haves

As we have defined clear must-do’s and should do’s, the primary tables include
the following:

¢ Farm: the farm table will include general details about the farm. Where
is it located? What is the name of this farm?

e Field: the field table will include specific details about the field. The
name of the field can be taken up into the description. For example:
“Field in the north”.

¢ FieldPart: the FieldPart table will include important metrics about the
location of the field according to longitude and altitude metrics. The
EXACT location of a field. As there could be multiple points of interest to
indicate the correct (entire) location of a field — multiple parts / field can
be defined.

e Picture: the picture table will include all information about a picture.
Location, AI data (flowerCount), date and URL (Amazon S3 bucket will
have a specific URL for each picture, indicating the correct file / picture).

e PictureType: the PictureType table will include which type of picture you
are uploading. Drone images or regular images?

CODEFARM

-

3.2.2 Changes during development

As the above table describes our investigative ERD model - additional tables
have been added and some tables have been changed.

e Attributes: some attributes have changed accordingly. Mostly it is
naming convention changes, some have attributes added.

¢ FieldPart: while this could be used with the satellite AI model - in our
current project this table had no use. The reason why it could be used by
the satellite AI model is when analyzing the smaller satellite pictures -
the data can be inputted one-by-one in this table. Since one big satellite
picture is split up in multiple smaller pictures — a new table is absolutely
required, which FieldPart could take up in the future.

e Picture: a new relationship with User has been established because we
required a link towards the user id for each picture taken. This way
logging can determine how many pictures a user has uploaded, for
example.

User

id: PK int

UserType 1.1 0. |usertype_id: FK1 NNA int
id: PK int name: AK NNA string
name: AK NNA string R1 last_name: AK NNA string
password: NNA string
email: NNA string
is_active: boolean

1.1
R2
0.* PictureType
ID: PK int
FarmUser name: AK NNA string
id: PKINT

user_id: PK FK2 NNA int
farm_id: PK FK3 NNA int

0.*
1.1
R3 R6
O“*
0.1
Picture
- id: PK int
Farm Field field_id: FK5 NA int
id: PK int id: PK int picturetype_id: FK6 NNA int
name: AK NNA string R4 farm_id: FK4 NNA int RS picure_date: NNA datetime
country: NNA string description: NNA string | ——————|url: NNA string
city: NNA string 1.1 0.+ |field_long: NNA decimal | 0.1 0.* |flower_count: NA int
postal_code: NNA int field_lat: NNA decimal pic_long: NA string
pic_lat: NA string
user_id: FK& NA int

Logging is not part of the final solution — but can be used for future
implementation to log the user actions (who performed which action at a certain
time? Upload pictures? Create or delete fields / farms / users?).

Produc tovner requirements

Applicaton requirements

®

CODEFARM

3.3 PBS: Product Breakdown Structure

The PBS offers an overview of all the specific requirements for our application /
project. As we have used this PBS during multiple phases of the project by now,
the below PBS is a modified version of the previous one.

Certain categories were changes (green area), as well as the product owner
requirements (blue area).

All elements have been scaled-down to four theme’s:

o Application: the focus of the application part is dedicated to creating
use-case diagrams, mockups, frontend, backend and database diagrams.

e AI: the focus of the Al part is dedicated to Al modeling and making sure
the Al can gather, label, train and test with data (pictures).

o DevOps: DevOps will focus on the back-end part of the application. Code
repository, CI/CD pipeline, test framework and hosting the web
application.

e Security: security will focus on keeping the application and data safe
and secure. The focus theme’s are encryption, user management and

Strawberry Flower Application }
Count numberof | { | Simple UIMUX
flowers
4 y,
User Management Prediction on nymherof
strawbemies
J
Scalability Multilungual
| ' .
Prediction cn optimal Extending with
harvest time loT
” e —
. Y
Detailed info on
environmental ———
factors
Application DevOps
I T |
Use-case
diagram Frontend Backend Database Diata Al Models — Repository
Encrypfion
L L Data L § | Gathering Object detection — ClCD Pipeline
LepEzzeniis] vizualisation Framework ERD Diagram | = User
- management
[Labeling Prediction
Use case J — Test framework
e — e - Data model ORC (Ops
.. Report Card)
— Training
Mockups — Hosting

— Tesfing

& 4 VIto

CODEFARM

e

In our final solution we have been able to fulfil at least 70%o of the
requirements. Below are the requirements which were not meant and the
reason behind this:

Product owner requirements:

e Prediction on optimal harvest time: as this was not a must-have,
there was not enough time to look into this feature. It would
definitely add tremendous benefits if implemented in the future.

e Detailed info on environmental factors: as this was not a must-
have, there was not enough time to look into this feature. It would
be ideal when comparing results if you have obtained further
environmental factors: weather conditions, humidity, warmth,...

e Extending with IoT: while the primary goal was to provide a
solution able to scan both regular pictures and satellite pictures,
adding IoT possibilities was another requirement. This extension will
allow the application to work indoors as location tracking is not easily
done there - and could be automated. As the initial two requirements
have taken up most time during the project - this feature did not
make it into development.

Application requirements: DevOps & Security

¢ Test framework: as this was not a must-have, there was not enough
time to look into this feature. Testing is ultimately split up in two parts:

o DTA environment: while a test environment was provided as a
separate development environment, testing the code itself
automatically via a CI/CD, for example, was not implemented.
Thus partially we have provided a solution for testing - but this is
not automated testing within a CI/CD or code.

o Testing framework: the primary reason why this feature did
not succeed. There are no built-in test frameworks deployed. API
testing or CI/CD code testing has not been implemented but could
be an ideal feature to make sure the application is working
sufficiently.

e ORC (Ops Report Card): report cards can help in determining if the
overall application is secure. While some basic security implementations
have been provided - advanced auditing has not been implemented.

& 7~ Vito

CODEFARM

3.4 PFD: Product Flow Diagram

For each part of the application a PFD is provided. This Product Flow Diagram
provides an overview of what is required for each product that is in
development. For now, the primary focus is on two products:

¢ Waebsite application: a website application is visible via any modern
day web browser. This web browser can be accessed via a variety of
devices such as laptops or smartphones.

¢ Mobile application: a mobile application is visible via any smartphone.
This application needs to be published to the android store or apple
store, or can be exported as a .APK.

A product flow diagram is deferred from the PRINCE2 framework which helps
to achieve a better project management. The focus of PRINCE?2 is to divide
projects into controllable stages.

Therefore, two diagrams have been created with specific requirements for each
application.

Product Flow Diagram - Strawberry Web App

Website Infrastructure Web Development | Pages Web Development ! Al / API

Activated site Configured site

Lagin page
requirements
Configurzd Login v

page
Data sources | Website text
Login page storage (HTML/ C33)
Registration page)
requirements Diata storage. -~ Websita Framework
[unstructured)
Registration page
Database (structured)

Forgatten passward
page requirements Al service for data
interpretation

Cloud Platform

Cods Repositary

Configured
Registration page

CICD Pipeline

API Service / Server | Al Service / Server || Wabsarver in cloud
Canfigurad Forgotten
password page
Data integration from 8| Count strawbemy Registerad (HTTFPS)
DB to Website flowers from pictures URL for website

Configured Upload
pictures page

AP Integration{s) for
stz CRUD

¥

¥

Forgotten password
page

Upload pictures page
requirements

Upload pictures page

On the next page you can find an additional part of the web application PFD.
This part includes additional Web Development / Pages aspects.

®

CODEFARM

Data visualization
page requirements
Configured Data
visualization page

Data visualization
page

Fiald management
page requirements

Canfigurad Field
managemant page
Field managemant
page

Admin: user
management page

requirements

Configured Ad
user mansgement
oee= Admin: user
management page

Admin: data
manzgement page
requirements
Canfigured Admin:
data management
page
Admin: data
management page

Chat functionality
requiraments

Configurad chat
functionality

Chat functionality

Product Flow Diagram - Strawberry Mobile App

Moblle App Developmant | Pages = Maobils App Development 7 41 7 AP

Configured site

Informalion added

Logn page
requirements

Configured Login 2
Page
Dralar sources § ‘Wiebsite lext
i i starage (HTML f £S5}

Regisiration page
requirements

| = Application

Framewark

Dt starsge
[unstructured]

Configured
Registration page

Regisiration page AP Integration(s) far

Database [struciured) data CRUD

Fargalten passward
page reguiremenls

Al service for data

Canfigured Forgalten| interpretation

password page

Fargatien passward
page

Upload pictures page
requirements

Configured Upload
piciures pages

Upload pictures page

Taking piclures page
requirements

Configured Taking
pictures page

Taking piclures page

Chat functionality
requirements

Canfligured chat
functionality

Chat funclionality

& 4 VIto

CODEFARM

o

3.4.1 Progressive Web Application (PWA)

Due to the need to have the application work in both a desktop and mobile
environment, we have opted to go with a React-based PWA in order to ensure
ease of maintenance and code parity of the two platforms. For this PWA we
have outlined several requirements. The requirements are further divided into
must-haves and should-haves.

3.4.1.1 Must-haves
The must-haves concentrate on creating a MVP: Minimum Viable Product.
This includes:

o Infrastructure: the infrastructure revolves around creating servers and
services which make sure the web application can effectively run.

¢ Web development: web development revolves around creating visual
representation(s) of the web application. The goal of this part is to
achieve a variety of pages that can interact with the data source, APIs,
Al service and infrastructure.

e AI: Al revolves around creating a service that can effectively count
strawberry flowers from a picture which is being uploaded via the front-
end webpage into a backend data store. This Al script will generate data
which need to be stored in a database / data source.

e API integration(s): API integration(s) revolve around creating new
data and managing existing data. APIs create an opportunity to build
micro services which can interact with any kind of integration in the
future. The current build focusses on integrating with a web application
and mobile application. APIs can display data retrieved from a data
source.

o Data sources / storage: the data sources / storage revolve around
creating a storage opportunity for all data involved in this project.
Primarily the focus lies on storing unstructured data and structured data;

o Structured data: Al service provides data from pictures. This
data needs to be stored in a database and later on be displayed
on the web application.

o Unstructured data: the primary source of structured data comes
from unstructured data - pictures. The pictures need to be
uploaded on the web application and stored for later use (AI or
API).

Once the above parameters are met a MVP is effectively created.

Should-haves go beyond the scope of the MVP, creating an opportunity for a
more secure web application and user permissions.

o Infrastructure: the infrastructure layer does not need additional
requirements for should-haves such as user permissions. The additional
factor that needs to be looked into is a WAF. A Web Application Firewall
(WAF) is essentially the bread and butter for a modern day web
application in the cloud. Without a WAF a web application is essentially
defenceless in future cyberattacks and data breaches.

¢ Web development: the web development layer requires additional
pages to be made which create an opportunity for end-users to register,
login and change credentials.

o API Integration(s): the API layer creates an opportunity to interact
with the data. This is called CRUD: Create, Read, Update and Delete. In
order to create new users, or update credentials, API integration(s) are
created to facilitate user permissions.

fwto

e

o Data sources: the data sources, especially the databases (structured
data) need to be modified with user data. The as-is construction of the
data warehouse of data storing solution can be used in this case.

3.4.1.2 Mobile application

The mobile application is essentially a trimmed-down version of the web
application which focusses on taking pictures and uploading pictures. It is
not the focus to work on additional parameters such as data visualization or
expansive dashboarding, for example.

e App development: app development revolves around creating a mobile
application that is suitable to achieve the must-haves for a mobile
application MVP.

o Data sources: the data sources from the web application will be used to
store pictures (unstructured data) and store additional data (structured
data) created by the AI scripting, for example.

The minimum viable product for the mobile application revolves around creating
a simple application that is able to create pictures, upload pictures and work as
an easier way to include location data from within the application, opposed to
providing strict measurements for the web application for uploading pictures.

® 741t

CODEFARM

3.5 Solution decision

Since we have determined the preferred solutions according to WDMs and
specific scoring — we can finally determine our full architecture and solutions. In
this chapter you will be able to read about our architecture and every
component individually.

3.5.1 CI/CD
CI/CD stands for continuous integration / continuous deployment. It
combines both aspects in a never-ending cycle in order to be able to integrate

and deploy a final application. Since we have determined our solutions based on
the final WDM scoring — most solutions can be summarized in one picture:

. g v A
% Flutter QNGULAR@ O mtbucket GitLab Azure

Web application framework re.ct s £ Y ' A / E
[django \ / '
boot O FastAPI {

or Js ‘ —
API framework S @
A /

Al framework

= WP gy /

Faster R-CCN

S

|
%4] IT € A 4 . S Iunk>
‘JJT.‘»J =la pytest WY e Gitlab o P

ssD

More details about certain pictures / tooling can be found in chapter 1.5 solution
analysis.

Once we take a look at the final scoring - we can determine our final solutions
which will be used during the next phase to build a complete application:

React JS E : @ .
\
\

Web application framework
~=

O FastAPI N -

API framework /,,,/ =

Al framework

& g i

CODEFARM

-

3.5.1.1 Realization phase changes

While we originally intended to implement the solution provided on the previous
page - a significant amount of changes has been made with regards to DevOps.

Google Cloud

Web application framework \

?Pﬁr?nisvﬁp[= C I C D

i
//

s

Al framework ‘“

|
) (r &7 ‘ |
‘]‘ | l
: : Google Cloud

pytest

e Code: originally we intended to include the stack on GitHub. While his is
perfect and mostly free — our release solution also changed. Since it can
serve both as a code repository and CI/CD we decided to switch entirely
to GitLab instead.

¢ Release: while Jenkins is a good solution and could be used as the final
solution, GitLab would make it easier both from a code as a release
perspective. This choice made the most logical sense since we can
combine both in one.

o Deploy: AWS is a perfect solution - but the environment we were using
was severely limited due to having a student account. This limited us in
providing a thorough solution with the full capabilities of a cloud
provider. When requesting an official account - this took too long, thus
we have chosen to make a switch from Cloud Provider. GCP offers out-
of-the-box full access accounts with 280%$ of test credit.

e Monitor: similar to the last point — we changed cloud provider due to
restrictions. This means monitor has also changed towards GCP, which is
done internally by GCP logging.

¢ Test: while we anticipated to include a full CI/CD solution — we have not
provided a testing framework such as Pytest. Due to time constraints
testing was not on the agenda for the MVP (minimum viable product) and
has therefore not been implemented further.

fwto

CODEFARM

3.5.1.2 GitLab

Gitlab is our code repository and CI/CD solution. The files provided in the
hand-over ZIP file are essentially all you need to start deploying the above
provided solution. Even in this case you have two options for deploying the
proof of concept.

o Docker / okteto cloud: the folder has a docker- M
compose file which can be used to deploy a staging

github/workflows
environment. Essentially this is the complete build as is O gt '

- just on a different cloud platform. B gitlab/agents/eaks-agent
¢ Kubernetes / google cloud platform: the folder has ' ' .
all the components needed to deploy to google cloud Baa
platform. Specifically the .gitlab-ci.yml file has
everything you need in order to deploy the solution 03 APP
without any manual interventions needed. -
In Gitlab the only requirement you need to provide is the & citlabcivm
possibility for a GitLab runner. This can either be installed o o
manually into your cloud solution - or locally. README.me
More information on providing a personal GitLab runner can be % docker-compose.yml
found via the official documentation:
https://docs.qgitlab.com/runner/install/ festix

When you do not want to provide a GitLab runner you can still use shared
runners - which do the job just fine as well. You do have to take into
consideration the shared runners have a limited amount of run time
available. Once you exceed this threshold you will have to pay for additional
minutes. Therefore a personal GitLab runner is advised — but not required in
the initial stage.

The only requirement for an out-of-the-box working CI/CD solution to google
cloud is the requirement of variables.

In GitLab you can set variables by selecting the Settings tab -> CI/CD ->
Variables section.

Variables Expand

Wariables store information, like passwords and secret keys, that you can use in job scripts. Each project can define a maximum
of 8000 variables. Learn more

“ariables can have several attributes. Learn mora.
= Protected: Only exposed to protectad branches or protected tags.
= Masked: Hidden in job logs. Must match masking requirements.
» Expanded: Wariables with § will be treated as the start of a reference to another variable.

Here you can configure all the required variables for this deploying. These
variables need to be customized according to your cloud environment.

Create a new GitLab project, import all the files and add custom variables
accordingly.

https://docs.gitlab.com/runner/install/

@ vito

CODEFARM

Required variables:

Type T Key Value Options Environments
Variable do_name [000000 xeres) Expanded All (default) [
Variable FLASK_APP_FASTAPILURL [4 R Expanded All (default) [
Variable FLASK_APP_FIREBASE_ID [fy r#xe=) Expanded All (default) [
Variable HOST [wrers [Expanded All (default) [
Variable KUBERMETESACCOUNT_TERA_ [fy *#+*=) Expanded All (default) [
PROJECT
Variable OKTETO_TOKEN [3 wrers [Expanded All (default) [
Variable OKTETO_USERMAME [~ #xee=) Expanded All (default) [
Variable PASSWORD [R Expanded All (default) [
Variable PORT By taxs] Expanded Al (default) [
Variable REACT_APP_APP_ID [3 R Expanded All (default) [

When you insert a variable you need to format it in this way:
<KEY_NAME>=<VALUE>

Example: FLASK_APP_FASTAPI_URL=https://api.vitofruitcounter.org/

For every single variable defined here you need to provide the exact same

naming convention as described in the two screenshots. These specific key
names are coded within the .gitlab-ci.yml file.

® 741t

CODEFARM

Variable REACT_APP_FASTAPI_URL [f weees [0 Expanded All (default) [

Variable REACT_APP_FIREBASE_ID [wrres [Expanded All (default) [

Variable REACT_APP_FIREBASE_KEY [3 weees [0 Expanded All (default) [

Variable REACT_APP_FLASKAPI_URL [3 wrres [Expanded All (default) [

Variable REACT_APP_GOOGLEMAPS_KE [=== [} Expanded All (default) [
¥

Variable REACT_APP_MEASUREMENT_I [fy #*=+= [Expanded All (default) [
D

Variable REACT_APP_MESSAGING_SEN [=== [} Expanded All (default) [
DER_ID

Variable SERVICE_ACCOUNT_KEY [3 wrexe [0 Expanded All (default) [

Variable SERVICEACCOUNT_TERRA_PR [**=== [} Expanded All (default) [
OJECT

Variable USERNAME [3 wrexe [0 Expanded All (default) [

Once the above variables have been defined you simply push new code, or
create a new CI/CD action and you deploying will be rolling out on GCP. Thanks
to the terraform automation you do not have to provide more settings.

qb ;7‘?”t9\

CODEFARM

-

3.5.1.3 Staging environment - docker - okteto

In order to deploy the staging environment you simply need to create a
okteto account and you are already ready to go. The provided docker-
compose file will automatically deploy the stack from GitLab to okteto cloud.

Once you have created your okteto account you need to create a new dev
environment and add the following parameters:

https://<username>:<access_token>@gitlab.com/<username>/<repository_n
ame>.git

An example from our project could be the following:
https://<username>: <access_token>@gitlab.com/derre-evers/CodeFarm.git

In which our project had the following username and repository name:

C Derre Evers / CodeFarm (& | Owner

An access token needs to be provided in order to be able to push and pull from
GitLab. Simply revert back to your user account settings by clicking on the
user icon in the top right corner -> edit profile. Now click on the left side of
your screen on Access Tokens and simply create a new access token.

Add a personal access token
Enter the name of your application, and we'll return a unigue personal access token.
Token name

hello-okteto

For example, the app n using the token or the purpose of the token. Do not give sensitive
information for the n. the token, as it will be visible to all project members.
Expiration date
-
Select scopes
Scopes set the permission levels granted to the token. Learn more
3

8 =pi

te_registry

Select all scopes to guarantee for enough access rights to deploy.

Now simply go to the okteto portal and launch a new dev environment:

CODEFARM

-

Launch Dev Environment

From

() aitHub > GitURL Wik Helm Charts

Repository URL

https:/<username>:<access_token=@gitlab.com/derre-evers/CodeFarm.git

Shortcuts: Github Gitlab Bitbucket
Branch
j',i <optional development branch=
Variables >
Advanced Options ?

You can specify a custom development branch as well, if you are using
another branch.

Now you deployment will automatically deploy the entire GitLab stack as if it
was a production stack towards Okteto cloud. Do mind again: make sure to use
custom variables in order for the applications to work properly. This is why a
custom development branch is advised.

3.5.1.4 Terraform
Terraform is used to automated our infrastructure at the lowest possible
stage. All required terraform files have been provided in the folder and should

only be imported directly into GitLab in order for them to work.

No additional configuration aside variables is required in order for terraform to
do its thing.

CODEFARM

-

3.5.2 Architecture

Not all solutions are mentioned in the CI/CD chapter. Since a variety of solutions
are also loosely connected - via AWS, for example, other solution(s) will be
visualised in our architectural overview. Most of the proposed frameworks will
also have to be managed on a server (in the cloud). These specific software
components are very important to consider.

The architecture can be summarised as the overall DevOps solution which will
be built in AWS, our deploy solution:

E AWS Cloud |

[: — E
i Server Subnet

<1 Data|subnat

=1 i Amazon
O e i Rekognition C
22 P Amazon 53 (A1) -
[L i
H L.
.

-

C
Mobile portal
Amazon

m| DynameDB

W’absawé((Ngin:)y
L _¢
‘@ m
—

@ .
. 3 ,
x Alpine sa‘E\der (AP

DAsT Jenkins

:' | Routes3 [ONS)

Website porial

Amazen
Cloudwaich

‘Code repository (GitHub)
Additional factors in-scope for our project are:

¢ Routeb3: Route53 is an Amazon AWS solution providing DNS routing in
the cloud.

e EKS: Elastic Cloud Kubernetes (EKS) is essentially Kubernetes in the
cloud (CI/CD: Operate).

e Amazon S3: S3 buckets provide a storage solution for unstructured
data (pictures / images) and a handy URL for better integration(s).

¢ Amazon Cognito: Cognito provides user management /
authentication via Amazon AWS.

¢ Amazon Rekognition: Rekognition is an AI solution provided via
Amazon AWS. It is essentially the doorstep for our Ai integration.

¢ Waebserver - Nginx: Nginx is a webserver solution providing a software
layer to deploy our React JS framework to (CI/CD: build).

¢ Alpine server - API: Alpine is a specific OS providing a software layer
to deploy our API framework FastAPI (CI/CD: build).

¢ Amazon DynamoDB: DynamoDB is a NoSQL database offering a single
table of data stored as key value pairs for simple data structures. This
can be used, for example, for the chat functionality.

¢ MySQL / Amazon RDS: Amazon RDS offers a relational database model
(MySQL) required for our UML diagram (our defined tables).

e DAST: Dynamic Application Security Testing is an additional security
measurement providing automated security during / after the
deployment.

& 4 VIto

CODEFARM

o

3.5.2.1 Realization phase changes

While we originally intended to deploy to AWS - during the development phase
we have made significant changes and have added a completely new
environment: a DTA environment.

Our original scope has changed tremendously and has a variety of additional
solutions added. You can find the original image in the folder provided.

__

Outside of Cloud environment(s) (1) B Inside of Cloud environment(s) ' Outside (2)
Build / Code layer Environment / . Network layer Application layer Storage layer Database layer.! Storage layer |
Presentation i m ' " 3
layer i %
O === STAGING %
: - : NV ONDIENT i Intemal Docker —
= ¢ . aii network - Container 1 @
(@) ' docker © okteto L layer provisioning i
. ; == : '
=]
Mobia porss Wedile ot " m.
PRODUCTION 5 T
‘A ENVIRONMENT " = £
'A ..?Ewafwm . < :@ ‘0 < : ? ’ N
) @ o s

A number of changes have been made:

¢ Cloud provider: while originally we intended to go for AWS - due to
restrictions we have changed cloud provider. The new solution is built on
top of Google Cloud Platform (GCP) and Okteto Cloud, which is our
staging environment.

e Staging / testing environment: in theory this could be another proof
of concept. It is deployed in the cloud and running / working as such. By
providing both a staging environment and production environment we
doubled our attempts at displaying the capabilities of our proof of
concept. Since staging in an actual environment (not just localhost
deployments) is much more handy, the staging environment was the
perfect solution to solve this problem. Production is made with
Kubernetes - and is a tad harder to test, while staging is made with
docker - making it easier for testing. In the end you simply change
certain parameters in the code (URLs) once deploying to production.

e Storage solution: in the CI/CD chapter we haven't even looked into
storage solutions yet. Originally this was intended for AWS - but as we
changed cloud provider, so changed the storage solution. In the new
deployment we utilize FireBase - which is a Google solution for a variety
of options. In our case it is provided as a file storage solution. The
combination of GCP and FireBase makes it easier as well: budgeting can
be completely integrated into GCP opposed to have an entirely different
platform / service provider.

e Terraform addition: terraform makes sure not only our machines are
built automatically - also our environment as a whole. This means
even deploying the entire stack to GCP doesn’t have to be done manually
anymore. By providing this possibility — we essentially provide a full
deployment of every application and the underlying environment. Please
do note while we want to achieve full automation — a very limited scope
of aspects is still manual.

Essentially the solution itself has not changed a lot - primarily the new DTA
addition, storage solution and full automated deployment are major features
added to the proof of concept.

® 74 uito

CODEFARM

e

3.5.3 Google cloud platform

Google Cloud Platform (GCP) is our cloud provider — and as described in a
previous chapter — you only need to create a new account in order to be able
to deploy to GCP. Do make sure you create custom variables!

There are two specific manual requirements:

¢ Domain: you need to have a domain.

o Database: you need to create a database and whitelist the correct asset
accordingly.

e FireBase: you need to have a FireBase account with a storage solution.

e Service account: you need to create a service account. For testing
purposes you need to provide the owner role. In production you should
work with principle of least privilege. You can provide specific service
roles for every specific job.

o Deploy token: you need to obtain a deploy token from GitLab which is a
pre-defined variable.

¢ Load balancer IP: you need to create additional DNS entries.

3.5.3.1 Domain

Since you already have the possibility to purchase a custom domain within
Google Cloud Platform - this becomes very easy.

Simply search for Cloud Domains and create a new domain. This will
automatically be subtracted from your GCP budget.

Cloud Domains REGISTER DOMAIN C RI

Cloud Domains enables management and configuration of domain
resource facilitates managing and configuring domain name regis

Registrations

= Filter Enter property name or value
| Status Domain name P DNS
O @ Active vitofruitcounter.org Cloud DNS

Once this is set up you need to change additional DNS configuration. Search
for Cloud DNS and simply adjust the parameters accordingly:

®

CODEFARM

S

|:| DNS name Type TTL (seconds) Routing policy
O ai.vitofruitcounter.com. & 300 Default
Il api.vitofruitcounter.com. A 300 Default
O vitofruitcounter.com. S04 21600 Default
O vitofruitcounter.com. NS 21600 Default
O vitofruitcounter.com. & 300 Default
O www.ai.vitofruitcounter.com. CNAME 300 Default
O www.api.vitofruitcounter.com. CNAME 300 Default
O www.vitofruitcounter.com. CNAME 300 Default

e A records: A records are records that link directly to your load
balancer. This will essentially transform the IP address to a domain
name. Look for the tab load balancing, save the ip address and create
custom A records for your domain and the load balancer IP address. The
load balancer is automatically created from your deployment.

Load balancer:

ab57b431e0c9540c988cc2125135d964

Frontend
Protocol P IP version IP:Port Metwork Tier 9
TCP IPvd 34.140.235.184:80-443 Premium
A record:
DMSE name ai.vitofruitcounter.com.
Type A
TTL(seconds) 300

Routing data

= Filter Filter datas

Data P

34.140.235.184

e CNAME records: CNAME records are required in order to obtain more
custom domain name aside from your original domain name. simply
add www to the front of your website in order to redirect towards your
original domain without www. This is essentially what a CNAME record
does.

®

CODEFARM

S

3.5.3.2 Database

The database creation is also a manual process. Simply adjust the GitLab
variables in order for your services to connect to this SQL server.

This public ip address can be used by your Kubernetes stack in order to
connect to the database. Add this variable in GitLab!

=) Connect to this instance

Public IP address

|34.?9.9.183 o |

Private I[P address

|1a.?1_112_3 [y |

Associated netwaorking

| projects/infra-fortress-375418/global/networks/default 3] |

Once this is done simply connect to the database via any preferred database
connection tool. The preferred tool in our case is MySQL Workbench.

Best match

~ A
s MySQL Workbench 8.0 CE R
* App

Apps MySQL Workbench 8.0 CE

App

mysql-workbench-community-

In order to connect from your local computer you also need to whitelist your
ip address. Simply look for your public ip address by googling what is my

ip:

what is my ip

®

CODEFARM

Now whitelist this ip address in your GCP database. Click on Connections
while in your GCP database instance and adjust the authorized network:

Authorised networks

You can specify CIDR ranges to allow IP addresses in those ranges to access your
instance.Learn more

access-school |] '
access-okteto (B '
access-home (18 | W

ADD NETWORK

In order to allow your deployment to communicate with the database it is
important to whitelist your load balancer IP. Please revert to the domain
and load balancer IP sections for more information about obtaining this IP.
Once you have obtained this IP you simply need to whitelist this IP address
similar to your own IP address.

Use the add network button in order to create a new IP whitelisting. Add your
public IP address or a custom range in order to be able to connect to your GCP
database.

Once this is provided you can successfully connect to your GCP database via
MySQL workbench.

In your workbench you only need to run the automated script provided
within the files (.sql) and run this SQL file for your database. The SQL script is
provided within the map structure and can be recognized by the .sql
extension.

3.5.3.3 Firebase

Firebase is our picture storage solution. The only requirement you need is to
create a new FireBase project and create a storage container.

Your Firebase projects

My First Project @

infra-fortress-375418

Add project

It is important to note you best use an authorized google cloud account
which is linked to your GCP cloud. The main account used in google cloud

&

CODEFARM

platform would ideally be your FireBase account as well. Since this is a Google
product - you can sign in with this account and set up a project accordingly.

Link FireBase to your Google Cloud Platform by creating a new app.

My First Project (sazpan

=== 2apps | </» nginx-web (&= test.test.com <+ Add app

Now click on the Storage tab in order to create a storage container.

This will provide you with all the configuration required in order to setup your
storage solution in order for applications to use it.

@ Add Firebase SDK

(® Usenpm (O Use a <script>tag

If you're already using NPM [4 and a module bundler such as webpack [or Rollup [, you can run the
following command to install the latest SDK (Learn more [4):

S npm install firebase |_|:|

Then, initialise Firebase and begin using the SDKs for the products that you'd like to use.

// Import the functions you need from the SDKs you need

import { initializeApp } from “firebase/app";

import { getAnalytics } from "firebase/analytics”;

// TODO: Add SDKs for Firebase products that you want to use

// https://firebase.google.com/docs/web/setup#available-libraries

// Your web app’'s Firebase configuration
// For Firebase JS SDK v7.28.8 and later, measurementId is optional
const firebaseConfig = {
apikey: “AIzaSyC7JjTT1Nmop1Q15FY9M114ZI7NuEPGhAeY™,
authDomain: “infra-fortress-375418.firebaseapp.com”,
projectId: "infra-fortress-375418",
storageBucket: “infra-fortress-375418.appspot.com”,
messagingSenderId: "1839391972988",
appld: "1:1839391972988:web:e24ce1b15d598c67cb7b89",
measurementId: "G-PP7BXCFGKM”

g
// Initialize Firebase

const app = initializeApp(firebaseConfig);
const analytics = getAnalytics(app); I_D

Since these steps already have been taken - you do not need to do this
anymore. This is just additional information on how you would link GCP and
FireBase.

Once this has been done - you can create a storage container as well.

7 Vito

vito

| remote sensing |

& 7~ Vvito

CODEFARM

Set up bucket

o Bucket options 2 Security rules

(® Create new bucket

(O Import existing Google Cloud Storage buckets

Bucket reference

infra-fortress-375418-1h9xg

Location (3 Access frequency (3 Storage class (B
- Standard - Multi-Regional

Follow the steps and create a new storage container.

Again - since this has already been provided - you do not need to follow this
specific step.

If you do create a new custom FireBase
account and setup - simply change the
GitLab environment variables for the
webserver!

The webserver is the only connection towards the FireBase storage solution.

One last aspect you need to consider is adjusting the rules of your storage
container. A simply set of rules is provided and can be toggled on or off:

rules_wversion = '2°;
service firebase.storage {
match /b/{bucket}/o {
match /{allPaths=#*} {
allow read, write: if false:

}
)
1

Simply change the false state to true. CAUTION: this will allow EVERYONE to
access your storage container (read: the entire world). It is best to create
custom rules for your solution specified.

&

CODEFARM

-

3.5.3.4 Service account

In order to be able to build towards the cloud platform you need to provision
sufficient rights to the CI/CD pipeline to access your cloud provider.

In order to accomplish this we will provide an example of how to do this in your
google cloud platform.

You must create a service account with the owner role. Please take in
consideration this is possibly not the most secure way of using such service
account. As explained before - you should create specific service roles for each
separate job and apply the least access privilege.

Under the tab IAM and admin you can find a section Service Account.
Service accounts <+ CREATE SERVICE ACCOUNT

1. Create service account: click on the blue button "+ create service
account”. For example - this SVC will be called “"deployer” because it
will deploy your GitLab resources to the cloud.

© Service account details

- Service account name
deployer ‘

Display name for this service account

- Service account ID *

‘ deployer X C ‘

Email address: deployer@infra-fortress-375418.iam.gserviceaccount.com [0

‘ Service account description ‘

Describe what this service account will do

CREATE AND CONTINUE

2. Grant service roles: now you need to give your service account access
rights. In our example we use the owner role — which has full admin
access.

®

CODEFARM

Grant this service account access to the project
(optional)

Grant this service account access to My First Project so that it has permission to
complete specific actions on the resources in your project. Learn mare [

-~ Role IAM condition (optional) @
“ Owner v | 4 ADDIAM CONDITION

Full access to most Google Cloud
resources See the list of included
permissions.

+ ADD ANOTHER ROLE

CONTINUE

In the third step you don’t have to perform anything - thus you o Grant users at
can click on DONE.

Now your service account has been created. m CANCEL

o3 deployer@infra-fortress- < deployer No keys
375418.iam.gserviceaccount.com

At this stage you still require an access key. In order to create 1068019 3p
this access key you simply click on the three dots at the end of _
the service account and select Manage Keys. Manage details

Manage permissions
Here you will create a new key. Click on the blue button and

select create new key. Manage keys

View metrics
ADD KEY = + View logs
Create new key Disable
Upload existing key , Delete

Create private key for ‘deployer’

Downloads a file that contains the private key. Store the file securely because this key
cannot be recovered if lost.

B infra-fortress-375...json

Key type

@® JSON

Recommended

O P12

For backward compatibility with code using the P12 format

CODEFARM

-

Select JSON and click Create. Now GCP will create a JSON download file.
This file you need to import in the designated variable in order for your
CI/CD to have access to your cloud environment. Insert the entire contents of
this JSON file into the variable and you should have access.

3.5.3.5 Deploy token
A deploy token is a specific token used to deploy, as the name suggests. This
token is required in order to use the .gitlab-ci.yml file. This is effectively your

deployment file. Either way you can still use variables if you choose to.

Click on the Settings tab on your left and select Repository. Scroll down and
expand Deploy tokens.

Deploy tokens Expand

Deploy tokens allow access to packages, your repository, and registry images.

Create a new deploy token and make sure to capture the deploy token. The
Username is required in this case since we are using this value as well.

New deploy token

Create a new deploy token for all projects in this group. What are deploy tokens?
Name

| deployer

Enter a unigue name for your deploy token.

Expiration date (optional)

Enter an expiration date for your token. Defaults to never expire.

Username (optional)

| deployer

Enter a username for your token. Defaults to gitlab+deploy-token-{n} .

Scopes (select at least one)
read_repository
Allows read-only access to the repository.

read_registry

Allows read-only access to registry images.
write_registry
Allows read and write access to registry images.

read_package_registry
Allows read-only access to the package reg stry.
write_package_registry

Allows read and write access to
Create deploy token

This deploy token can be used in order to perform the CI/CD pipeline actions.
Currently this is hardcoded in the .gitlab-ci.yml/ file:

ne package registry.

- kubectl create secret docker-registry regcred --docker-
server=${CI_REGISTRY} --docker-username=<Username> --docker-
password=<deploy token>

Once you adjust the parameters you are able to deploy via GitLab.

fwto

CODEFARM

o

3.5.3.6 Load balancer IP

Last but not least you will have to provide DNS records of your load balancer
IP. Revert to the domain section for an overview of all the A records
required. An example of A records you require:

|:| DNS name Type TTL (seconds) Routing policy
O ai.vitofruitcounter.com. A 300 Default
O api.vitofruitcounter.com. & 300 Default
O vitofruitcounter.com. S04 21600 Default
O vitofruitcounter.com. NS 21600 Default
Il vitofruitcounter.com. A 300 Default
O www.ai.vitofruitcounter.com. CNAME 300 Default
O www.api.vitofruitcounter.com. CMNAME 300 Default
O www.vitofruitcounter.com. CNAME 300 Default

In the domain section this is more thoroughly explained.
3.5.3.7 Kubernetes files

The project itself is built with Kubernetes files. These files make sure the
infrastructure is automatically generated in a Kubernetes cluster. In order to be
able to obtain a valid domain name, it is required you change certain files
accordingly.

In the CCS folder, a variety of files and folders can be found:

e Al-Server: this folder holds all the deployment files required for the Al
server. While it doesn’t use the Dockerfile — as this is also present within
the general Al server found in the map at the root, we still included it
here. The deployment file here is called yolo.yaml.

e API-Server: this folder holds all the deployment files required for the
API server. The deployment file is called ApiServerDeployment.yaml.
The project folder holds the production API files required for
deployment, as well as the dockerfile.

o Certificate-mgmt: Since we are using Let’s Encrypt for our
deployment security and encryption, here you will find all the required
cert-manager files required by cert-manager. Cert-manager is
automatically deployed and provisions certificates with these files.

o Production: these .yaml files hold the production certificate.
This will provide you with a proper certificate on production
assets.

o Staging: these .yaml files hold the staging certificate. This can
be used if you wish to deploy a staging environment in a GCP
cluster. In our current setup we have provisioned a staging
environment within Okteto Cloud. At this stage of the project you
can easily deploy a second cluster, aligning with the staging
certificate, to provide a proper staging setup within GCP.

e Staging: this folder holds all the staging assets required for
deployment. Mostly revolving around the database and a test API setup.
For development. Since the API will use a different database - the

fwto

CODEFARM

e

staging database - it required a different database.py setup (and
especially different .env variables).

e Terraform: this folder holds all the required files for our terraform
automation. All the terraform files can be recognized by their .tf
extension.

e Webserver: this folder holds all the required files for deploying our
webserver, including our ingress rules. The files actually used here
are:

o Ingress.yaml: this file holds the ingress ruling for all the
applications. This will be the only file that needs changing for
your deployment.

o Deployment.yaml: this file holds the deployment of the
webserver in our Kubernetes cluster.

o Service.yaml: this file holds the service of the webserver in
our Kubernetes cluster. A service is required to expose the
application. In the other application folders this part is included
within the single .yaml file.

The most important file you need to change is the ingress.yaml file, found in
the Webserver folder.

spec:

16 tls:
- hestsr A domain is generated in a previous
12 - vitofruitcounter .arg . . .
13 - api.vitofruitcounter.ora chapter. Once this is done - you simply
14 - ai.vitofruitcounter.ord change the host parameters within this
15 cecretName: 5:-'L-;5|'~-_-|:.*:[-||_| ction file. Every Single URL should be Changed
16 rules: to your domain accordingly before
17 - host: vitofruitcounter.org deployment.
18 http:
- e Once this has been achieved - ingress will
- ::;tnf-\-;:-:: Prefix automatically create new rules linking
22 backend: your domain names to your load balancer.
service: If you have provided the correct DNS
24 name: hello-nginx-https records in your Cloud DNS (A records),
25 port: the outside world should now be able to
name: hEip open these host URLs correctly.
el I h_tt FREVELOTIUSTEOUITER-STE Do take in consideration the Let’s Encrypt
. Cathe- can take a little while to apply it’s
1 _ path: / production certificate.
2 pathType: Prefix
3 backend: This file could also be used to create
4 service: another staging environment, for
. name: hello-api-server example. Simply change the secretName
- e and certmanager.k8s.io/cluster-issuer:
nanes =pe "letsencrypt-production” to staging
host: 3i.vitofruitcounter.o where production is called.
4 hitp
41 paths: Now two clusters can be spawned: one
42 - path: / production cluster and one staging
43 pathType: Prefix cluster.
44 backend:
o e loecervice The other files in the folder were used for

name: ai

test deployments and are here for
documentation purposes, as well as self-
signed certificates.

| & F4~Vito

CODEFARM

o

3.5.3.8 Docker compose

Last but not least you can find a docker compose file in the root of the
project. This file can effectively be used in the exact same matter as the
Kubernetes cluster — making testing in Okteto Cloud a tad easier.

If you wish to perform a Docker deployment - or a
T eiwinan. deployment in Okteto Cloud (which is free - but has
sa-cezraen |imited resources!), you simply adjust this file
accordingly.

Change the image variables to contain your own
docker hub images. The current mentioned images
are provisioned by one of the CCS students and
should be the latest up-to-date files according to
yadnin/hpmyadniniLatest the project deadline.

phpmyadmin:
image: p

- do
container_name: my-php-myadmin-codefarn
ports:

_ wapg2

Once new development has started on this project -

S new images need to be created, and the image
names should be changed. The only image that

should not be changed is your phpMyAdmin image -

: since this is just a general deployment used to

dnace: mresscon/picenvercosearnaee: INSPECt your database table(s).

container_name: apiserver
ports:

et Other important files, such as the database files, can
be found within the staging folder in the CCS folder.

At this stage you simply need to create your own docker files which can be
used to deploy a second variant of our project. Simply use the below commands
in order to generate new docker images for the deployments:

Always login first: docker login -u $DOCKER_USER -p $DOCKER_PASSWORD
Webserver examples (use the root location):
e docker build --no-cache -t fredsOOn/codefarm-webserver:latest -f
CCS/Webserver/Dockerfile .
o docker push fredsO0On/codefarm-webserver

AI server examples (use the root location):

e docker build -t fredsOOn/ai-codefarm:latest -f AI/Dockerfile ./Al
e docker push fredsO0n/ai-codefarm:latest

API server examples (use the root location - staging setup will be used here):
e docker build --no-cache -t fredsO00n/apiserver-codefarm:latest
./CCS/Staging/api-server

e docker push fredsO0On/apiserver-codefarm:latest

Database examples (which includes an automated .sql script - which is also
used in our production database) use the database staging folder:

e docker build --no-cache -t fredsO0n/database-codefarm:latest .
e docker push fredsO0n/database-codefarm:latest

Apply the above commands with your own username (not including
<freds00n>) to push images to your docker hub.

& 4 VIto

CODEFARM

o

3.5.3.9 Budget

In order to have a realistic view on the possible costs of your deployment - a
overview will be given here.

A basic deployment as described above with a minimal set of capabilities
(minimum RAM and CPUs) for your Kubernetes cluster will result in
approximately 20 € consumption each week:

Service Cost Discounts Promotions and others 4 subtotal

@® Cloud Domains €11.26 £€0.00

@ cloud Logging
® Clou

Networking 3.82

This includes two stacks with two continuously running clusters. SQL
databases are manually started each time you require them. All other aspects
will always be running (DNS, for example).

Project Project ID Project number Cost Discounts Prometions and others
@ [Charges not specific to a = €11.04 £0.00 -£11.04
proj

@ teraform-testproject terraform-testproject- 796993379129 €16.2 -£2.39

375708

My First Project infra-fortress-375418 039391972908 €31.78 -£41.70 -£40.08

Thus far — running from 1 February until 18 February you will have a total bill
of 64,94 € approximately. By combining both stacks you can obtain a realistic
view on how much the current stack would cost. Discounts are automatically
applied by GCP due to selecting certain settings in your deployment.
Promotions and others is the reduction obtained by Google Cloud free
budget provided at the start of this account. Thus this is the normal operation
cost in our case if we did not have free budget provided.

Approximately this would result in +- 100 € running costs each month. Do
take in consideration: SQL database is mostly off while all other services are
continuously running. This would not give a realistic image of the true costs -
thus we have created a simulation.

Four aspects need to be taken into consideration:

¢ Cloud load balancing: load balancing can also add costs due to traffic
coming into your network and going out your network.

¢ GKE Standard Node pool: this is your Kubernetes cluster — essentially
all your services and machines running.

¢ Cloud storage: this is your storage solution. While this is a very simple
calculation — do keep in mind FireBase can add additional costs.

e Cloud SQL for MySQL: this is your database solution.

For all these aspects we have generated the following approximate costs:

fwto

CODEFARM

o

Belgium Z [
Region: Belgium
Forwarding rules: 3 EUR 16.20 2,190 total hours per month
: P del- Regul
nbound data processed: 100 GiB EUR 0.74 rovisioning mage reguar
Instance type: e2-medium EUR 7429
Qutbound data processed: 100 GiB EUR 0.74
Operating System / Software: Free
EUR 18.27 Estimated Cemponent Cost: EUR 74.29 per 1 menth
DB-STANDARD-2 /Z
of instances: 1
Instance type: db-standard-2
Location: Belgium
730.0 total hours per month))
3 x boot disk
SSD Storage: 20.0 GiB
Product accompanying: GKE Standard
Backup: 0.0 GiB Zonal balanced PD" 100 GiB EUR 920
EUR 83.90 EUR 27.61

Total Estimated Cost: EUR 214.07 per 1 month

The above calculation takes into consideration all services are running
continuously (24/7). Which brings a total of 214,07 € expenditure each
month.

o GKE Standard Node Pool: by far the #1 cost. This calculation
essentially provides you with two pools that can be used by the
applications. If, for example, the load in one pool is becoming too much
- the other pool can be used and essentially gives you double the
resources. This can always be optimized - is your load lower? Change
the node pool settings and reduce costs if required.

e Cloud SQL for MySQL: a cloud instance does cost a lot of money - but
is essentially 24/7 available. You have at least 100 GB of storage and
sufficient resources to process incoming traffic. Do take into
consideration you do not have to manage this database at all. This is
the reason why it is also HA: High Available. The database requires
updates and can cause your DB to be unavailable. Since it is setup as
HA - you will never experience downtime and the DB is essentially
updated and maintained for you. You only need to control the data!

Persistent storage relies on the fact your GKE standard node pool needs to have
storage available. Since each pool can run on 50 GB of storage - this should be
sufficient for each node.

& 4 VIto

CODEFARM

o

3.5.4 AI Models
The Smartphone model
3.5.4.1 Dataset preparation process

We collected 340 high-resolution images of strawberry flowers from the
greenhouse located on Thomas More campus in Geel. The images were captured
using a smartphone camera with a resolution of 12 megapixels. Before labelling,
we performed quality checks to ensure that the images were suitable for
training the YOLOvV8 model. As a result, we removed a humber of images that
were out of focus, blurred, or had poor lighting conditions. After the quality
checks, we were left with a total of 315 high-quality images for labelling.

To label the images, we used the open-source annotation tool, MakeSense.ai.
Two annotators manually labelled the images, drawing bounding boxes around
the strawberry flowers and assigning them to the "strawberry" class. We also
applied random image augmentations, such as rotation, flipping, and resizing, to
increase the diversity of the dataset and improve the model's performance. The
final dataset consisted of 315 labelled images and was split into training (70%),
validation (15%), and testing (15%) sets.

3.5.4.2 The model architecture

We made several modifications and customizations to the YOLOv8 model
architecture and parameters to improve its performance on our strawberry
flower detection task. Specifically, we used the following modifications:

We increased the input image size to 608x608 to capture more details and
improve the detection accuracy.

We changed the anchor boxes to better match the size and aspect ratio of
strawberry flowers.

We adjusted the number of filters and layers in the backbone network to
improve the feature representation and reduce computation time.

We trained the model using the Adam optimizer with a learning rate of 0.0001
and a batch size of 64, for a total of 100 epochs.

Overall, these modifications and customizations helped to improve the
performance of the YOLOv8 model on our strawberry flower detection task,
achieving an average precision (AP) of 0.93 on the validation set. Keep a record
of the validation process, including any metrics used to evaluate the
performance of the model, such as mAP (mean average precision).

3.5.4.3 Challenges encountered

During the training process of the YOLOv8 model, we encountered the following
issues and challenges:

Limited amount of labelled data: We only had 315 labelled images for training
the model, which could lead to overfitting and poor generalization to new
images. To address this issue, we applied data augmentation techniques to
increase the diversity of the dataset and improve the model's ability to
generalize to new images.

GPU memory limitations: The YOLOv8 model is a large and complex model, and
training it on a single GPU with limited memory can be challenging. We

® 7~ Vito

CODEFARM

o

addressed this issue by adjusting the batch size and reducing the image
resolution to fit the available GPU memory.

Overall, by applying these techniques and addressing the issues we
encountered, we were able to train a high-performing YOLOv8 model for our
strawberry flower detection task. The model achieved an average precision (AP)
of 0.93 on the validation set and performed well on new, unseen images.

3.5.4.4 Code snippets

For this training, we used the YOLOvVS8I object detection model and a large pre-
trained label to achieve high accuracy in detecting objects. However, it is
important to note that there is a trade-off between speed and accuracy when
using larger models and labels. The training was run for 100 epochs on the
specified dataset.

pip install ultralytics

cd ultralytics
pip install -gr requirements.txt

drive.mount(, force remount=True)
from ultralytics YOLO

model = YOLO() # load a pretrained YOLOv&n model
model.train{data , epochs } # train the modeﬂ

We used the Ultralytics YOLO library to train a custom object detection model
using the YOLOv8m architecture. The model was trained on a custom dataset
specified in the custom_data.yaml file for 100 epochs. The drive.mount()
command was used to mount Google Drive to the Colab environment to use the
custom dataset. The model was loaded with the YOLO() function and then
trained with the train() function.

3.5.4.5 Performance evaluation

Predicted

A confusion matrix is often used to describe the performance of a model on a
set of data for which the true values are known.

& 4 VIto

CODEFARM

o

In our case, the model predicted that there is a flower with a probability of 0.93,
and background with a probability of 0.07, while the actual object in the image
is also a flower. This is referred to as a true positive (TP) in the confusion
matrix.

The second scenario from the graph above is when the model predicted that
there is a flower with a probability of 1.0, but the actual object in the image is
the background. This is referred to as a false positive (FP) in the confusion
matrix.

The confusion matrix allows us to evaluate the performance of a model by
comparing its predictions to the actual true values. In this case, the model
appears to perform well in correctly identifying the presence of flowers, but it
also has a high rate of falsely identifying backgrounds as flowers. By analyzing
the confusion matrix, we can identify areas for improvement in the model's
performance and adjust the model accordingly.

F1-Confidence Curve
1.0

—— Flower
= 3|l classes 0.91 at 0.730

0.8

0.6

F1

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

The F1 confidence curve is a graphical representation of the relationship
between the model's F1 score and the confidence threshold used to make
predictions. The F1 score is a measure of the model's accuracy that takes both
precision and recall into account. By varying the confidence threshold, you can
adjust the trade-off between false positives and false negatives, and the F1
confidence curve allows you to visualize the impact of this trade-off on the
overall accuracy of the model.

Our smartphone model had 0.91 accuracy at a confidence threshold of 0.730.
This means that at a confidence threshold of 0.730, the model has a good
balance of precision and recall for all classes, indicating a high level of overall
accuracy.

®

CODEFARM

The Satellite / Drone model
3.5.4.6 Dataset preparation process

We labelled 34 images using makesense.ai and label studio. Due to the tiny size
of the flowers that need to be detected, the images were sliced into smaller 15 x
15 images. This allowed us to generate a larger dataset of 6100 images for
training, 1400 images for validation, and 225 images for testing.

3.5.4.7 The model architecture

We made several modifications and customizations to the YOLOv8 model
architecture and parameters to improve its performance on our strawberry
flower detection task for the drone images. Specifically, we used the following
modifications:

We increased the input image size to 1024x1024 to capture more details and
improve the detection accuracy.

We changed the anchor boxes to better match the size and aspect ratio of
strawberry flowers in drone images.

We trained the model using the Adam optimizer with a learning rate of 0.0001
and a batch size of 32, for a total of 100 epochs.

Overall, these modifications and customizations helped to improve the
performance of the YOLOv8 model on our strawberry flower detection task for
the drone images, achieving an average precision (AP) of 0.94 on the validation
set. We kept a record of the validation process, including the metrics used to
evaluate the performance of the model, such as mAP (mean average precision).

3.5.4.8 Challenges encountered

Training the YOLOv8 model on drone images posed some challenges. First, the
small size of the objects of interest made labeling a difficult and time-consuming
task. Additionally, we faced GPU memory limitations, which required us to
carefully manage the batch size and the size of the input images. Despite these
challenges, we were able to successfully train a model that achieved high
accuracy on the detection task

&

CODEFARM

-

3.5.4.9 Code snippets

yolo task-detect mode=train model-yolov8l.pt data-{dataset. }/data.yaml epochs

For this training, we used the YOLOvS8I object detection model and a large pre-
trained label to achieve high accuracy in detecting objects. However, it is
important to note that there is a trade-off between speed and accuracy when
using larger models and labels. The training was run for 100 epochs on the
specified dataset.

3.5.4.10 Performance evaluation

Confusion Matrix

flower

Predicted

-04

background

-0.2

=-0.0
flower background
True

A confusion matrix for a YOLO model shows how well the model is able to
correctly identify and classify objects in an image. In this scenario, the
confusion matrix indicates that the model was able to accurately identify a true
flower 90% of the time (true positive) while incorrectly predicting a flower 10%
of the time when there was none (false positive). Additionally, the model was
able to accurately identify a true background 100% of the time (true negative)
and did not predict any flowers when there were none (true negative).

Overall, the confusion matrix suggests that the model is performing well in
identifying true flowers, but may need to be fine-tuned to reduce the false
positive rate in order to improve its overall accuracy. We performed a number of
actions like including more background images which ultimately increased the
accuracy of the model.

&

CODEFARM

flower
fiower

flower 0 7
flower 0.7°

flower 0.8

LIWET U.C
¥

3.5.4.11 Conclusion

The training of the YOLOvV8 model for strawberry flower detection was
successful, and we achieved high accuracy metrics on the validation set. The
final average precision (AP) of the model on the validation set was 0.93 for the
smartphone mode and 0.922 for the satellite / drone model, indicating that the
model was able to accurately detect strawberry flowers in images.

We also observed that the model's performance improved with additional
training epochs and a larger batch size, as well as the use of mixed precision
training. The use of data augmentation and focal loss also helped to improve the
model's ability to generalize to new, unseen images.

Based on these results, we can conclude that using appropriate training
techniques and hyper parameters is important to achieve high accuracy metrics
in object detection tasks.

& . 111

CODEFARM

-

3.5.5 Application
3.5.5.1 Codebase

For this project we created a mobile application and a web application. We chose
React as our code base because that way we only had to make one project for
both applications. By making this decision we saved a lot of time because we
only had to write one piece of code to achieve the same goal. This work method
is called a Progressive Web App(PWA).

3.5.5.2 Challenges encountered

For the possibility of taking pictures on the mobile application we had to
implement a npm library. Not all libraries were compatible with some other
libraries we used, so we had to do a lot of trial and error with a couple of
camera libraries. Another challenge with using the camera was that all the
libraries automatically convert the taken images to a base64 string. Due to this
we had to make some workarounds to send a proper jpg image to the Al server.

3.5.5.3 File structure
v public In these files you can find the text for the application in

Dutch and English, if you want to add an extra
language or text you can add that here.

~ locales
v en
{} translation.json

~ nl

{} translation.json

v apis In this folder you can find the files which connects to
the different API's we've used. We chose to make a
separate file for each API to have a clear overview of
the different API calls.

J5 ai-apijs

J5 auth-apijs

J5 database-api.js

J5 googlemaps-api.js

J5 s3bucket-apijs

& 7~ Vvito

-

v components In the components folder we stored all smaller parts of
~ modals a page. This is easier because that way we can re-use
a part if you need it on different pages. This way you

J5 modalDialogFor... . .
° =T don’t need to configure every part over and over again.

J5 modalDialogWar...
J5 cam-button.js
J5 card-button.js
J5 carousel-input.js
J5 create-fieldjs
J5 dropdown.js
J5 edit-field.js
J5 flagrow.js
J5 footer,js
J5 key-data-visualizati...
J5 navbar,js
J5 new-field.js
J5 spinner.js
J5 thumbs.js
e In this container folder we programmed the files for the

main pages of the application. On this pages we

. implemented the components so the user can access
JS guest-login.js them.

JS login.js

~ auth

J5 profile.js

datavisualization.js
fields.js

home.js

log.js

picture.js
grgenerator.js
routes.js

upload

users.

userscreate.js

video.js

3.5.5.4 Use and adapt the project

To use and make changes locally in the project you have to follow the next
steps.

1. Download the project folder onto your device

2. Open a terminal in this folder

3. Run the command ‘npm install’ to install all the used libraries in the
project on your device

4. Run the command ‘npm start’ to run the application so you can review
and test the changes you’ve made

& 4 VIto

CODEFARM

e

4 CONCLUSION

Building multiple services, in a multi-disciplinary team, posed a challenging
Project 4.0 deliverable. The deliverable contains a multitude of servers
consistent of artificial intelligence, progressive web application, APIs and a
Kubernetes infrastructure. All of these services are eventually combined into one
overall solution: the ability to be able to recognize (strawberry) flowers from a
picture. Even at this stage the assignment was expanded with drone / satellite
pictures.

Once separate services were built and ready to be integrated, a CI/CD pipeline
creates a fully automated way for integrations. Furthermore the automation was
expanded with Terraform, providing a solution to automatically generate most
aspects of the base layer of the final project. Combining both a CI/CD pipeline
and Terraform creates a Kubernetes cluster that is nearly fully automated and
scalable.

Once the above functions have been provided - the addition of expanding APIs
and the webserver were our next achievements. The project effectively holds a
user management system and a field creation option. As there are different
types of users — only a farmer and admin are allowed to view all building blocks
of the project. Other users, such as the worker, can only upload pictures,
enhancing security further. Each user is provided with a login and the ability to
create a new account. Data visualization creates a thorough overview of each
farm’s data regarding counted flowers. The addition of including a heatmap in
the field overview creates a possibility for a farmer to recognize where most of
the flowers on their field(s) are. The ability to create and manage multiple fields
is also possible.

All of the above features create a fully functional application which is our final
Project 4.0 achievement. A lot of the components mentioned required everyone
to work on different fields, in their field of expertise and beyond.

In the end we learned a lot from our own part, and especially from each other.
Working on features outside of our comfort zone made us resilient to a rapid
expanding IT industry. An essential skill for the future. Alongside learning we
got to know each other and bonded in order to achieve the desired end result.

This report is the final representation of our Project 4.0 achievement and we
hope it brings more ideas and inspiration to the new owners of the project files
and instructions listed in this folder.

| & F4~Vito

CODEFARM

o

5 BIBLIOGRAPHY

Interested in looking into our sources? Here you will be able to find even more
information about the sources used during our investigative phase.

5 Image Annotation Tools to Get Your Labeling Project Started. (2022, October
25). Datagen. https://datagen.tech/guides/image-annotation/image-annotation-
tool/

500: We've Run Into An Issue | Mailchimp. (n.d.). Copyright (C) Mailchimp. All
Rights Reserved. https://mailchi.mp/0a6a8b0603aa/hlcog8m7ub

Ali, A. (2022, November 4). 14 Container Orchestration Tools for DevOps.
Geekflare. https://geekflare.com/container-orchestration-software/

Amazon CloudWatch vs Splunk Enterprise. (n.d.). TrustRadius.
https://www.trustradius.com/compare-products/amazon-cloudwatch-vs-splunk-
enterprise

Application and Infrastructure Monitoring - Amazon CloudWatch - Amazon Web
Services. (n.d.). Amazon Web Services, Inc.
https://aws.amazon.com/cloudwatch/

Author, B. (n.d.). 6 Reasons Why You Should Choose Cloud Hosting.
https://www.baass.com/blog/6-reasons-why-you-should-choose-cloud-hosting

Badkar, G. H. A. A. (2022, July 1). Popular Test Automation Frameworks: How
to Decide. BrowserStack. https://www.browserstack.com/guide/best-test-
automation-frameworks

Bandyopadhyay, H. (2022, October 6). YOLO: Real-Time Object Detection
Explained. V7. https://www.v7labs.com/blog/yolo-object-detection

Brice, S. (2021, December 16). Choosing the Right Model for Object Detection -
Samuel Brice. Medium. https://samdbrice.medium.com/dcda0c8f6f70

Carmichael, C. (2022, December 5). The 9 Best Cloud Hosting Providers 2022 |
Ranked and Reviewed. Website Builder Expert.
https://www.websitebuilderexpert.com/web-hosting/cloud-hosts/

Carrero, L. (2022, September 16). Which are the most used web servers?
Stackscale. https://www.stackscale.com/blog/top-web-servers/

Chowdhury, A. R. (2022, April 23). Best Python Testing Frameworks - arnab roy
chowdhury. Medium. https://medium.com/@arnabroyy/best-python-testing-
frameworks-bb7ab1b3d366

DhiWise. (n.d.). Explore the top testing libraries and tools for React.js app.
https://www.dhiwise.com/post/react-testing-libraries-and-tools-of-2022

Etukudo, E. (2022, February 25). Best options for self-hosting Create React App.
LogRocket Blog. https://blog.logrocket.com/best-options-self-hosting-create-
react-app/

Keylabs. (2022, September 8). Compare The Nine Best Image Annotation Tools
in 2022. Keylabs Blog Features the Latest News and Updates.
https://keylabs.ai/blog/reviewing-the-top-9-image-annotation-tools-in-2022/

fwto

o

Kubernetes Documentation. (n.d.). Kubernetes.
https://kubernetes.io/docs/home/

Maayan, G. D. (2022, June 20). AWS vs. Azure Cost Comparison [2022].
Codemotion Magazine.
https://www.codemotion.com/magazine/devops/cloud/aws-vs-azure-cost-
comparison/

Mesquita, D. (2022, March 11). Introduction to Object Detection Model
Evaluation - Towards Data Science. Medium.
https://towardsdatascience.com/introduction-to-object-detection-model-
evaluation-3a789220a9bf

Michael Crilly. (2021, November 17). Is HashiCorp Nomad worth learning?
YouTube. https://www.youtube.com/watch?v=j6CZ5n]J108Q

Nerd, T. (2022, August 18). The Top Ten Web Frameworks for creating REST
APIs -Backend Development. PyCodeMates.
https://www.pycodemates.com/2022/08/top-ten-web-frameworks-for-creating-
rest-apis.html

Pratama, A. S. (2021, December 27). 5 Best Free Image Annotation Tools -
Data Folks Indonesia. Medium. https://medium.com/data-folks-indonesia/5-
best-free-image-annotation-tools-80919a4e49a8

ProjectPro. (2022, June 6). AWS vs Azure-Who is the big winner in the cloud
war? https://www.projectpro.io/article/aws-vs-azure-who-is-the-big-winner-in-
the-cloud-war/401

What are the best web frameworks to create a web REST API? (n.d.). slant.co.
https://www.slant.co/topics/1397/%7Ebest-web-frameworks-to-create-a-web-
rest-api

What are the best web servers? (n.d.). slant.co.
https://www.slant.co/topics/764/%7Ebest-web-servers

