

Cybersecurity & SOC

The Security Operations Center Case

Frederik Crauwels

Bachelor in Electronics-ICT

Option: Cloud & Cybersecurity

Academic year: 2022-2023

Campus : Geel

 3

Table of contents

INTRODUCTION.. 4

1 SECURITY OPERATIONS CENTER .. 5

1.1 Architectural design ... 5
1.2 Building blocks ... 7
1.2.1 Red team operations ... 7
1.2.2 Hosts / assets ... 7
1.2.3 SIEM & Log ingestion ... 8
1.2.4 SOAR .. 8
1.2.5 IM / IR & Threat Intelligence .. 9
1.3 Implementing your SOC ... 10
1.3.1 Caldera ... 10
1.3.2 Windows (pro) host .. 12
1.3.3 Wazuh .. 13
1.3.4 Shuffle.io .. 14
1.3.5 TheHive5 .. 16
1.3.6 VirusTotal ... 18
1.4 Testing your SOC ... 19
1.4.1 Leave the gates right open .. 19
1.4.2 Putting Caldera to use .. 20
1.5 Honorable mentions ... 26
1.5.1 Close the gates – how do you SSH into a machine 26
1.5.2 Graylog – log ingestion done better .. 27
1.5.3 Local docker containers .. 29
1.5.4 Cortex .. 30

CONCLUSION…. .. 31

BIBLIOGRAPHY .. 32

 4

INTRODUCTION

This paper is an assignment for the course “Cybersecurity & SOC” at the Thomas More
hogeschool. As one of the many subjects this project focusses primarily on blue team
security and devops engineering. Simply put: a perfect combination of Cloud &

Cybersecurity.

Devops (engineering) revolves around combining development and operations. It is a
combination of people, processes and technology in order to create one, continuous
stream of planning, coding, building, testing, implementing, deploying and monitoring.
In essence DevOps revolves around automating as much as possible in order to
generate a faster deployment and better application development. As this project

requires the implementation of multiple software components, network(s) and assets,
scalability, ease of (new) integration(s) and future-proofing the final solution are the
most valuable aspects.

Security operations center (SOC) revolves around creating a safe and secure
environment. Keywords are: visibility, security, protection and response. A SOC is
mostly a combination of a multitude of abbreviations:

• Hosts / Assets: your hosts, or assets, are the cornerstone and frontline of your
environment. These literally include ALL your personal / professional assets
(end-user devices, servers, DC and even your entire SOC).

• Log ingestion: in order to obtain visibility – you need to obtain logging.
Logging is available on both Windows and Linux assets in all kinds of shapes and
forms.

• SIEM: Security Information and Event Management combines all ingested logs

into one, “simple” environment. Every single source of logging and information
coming from your assets are integrated in this solution.

• SOAR: Security Orchestration, Automation and Response provides “DevOps” in
security. SOAR will make your SOC an automated powerhouse in which the
opportunities are endless. Automatically handle events and incidents by
implementing more third party solutions for further analysis – from IP reputation
/ fraud scoring to hash evaluations of files.

• IM & IR: Incident Management and Incident Response provide you with
services once cyber threats become reality. It can both be handled manually or
automatically, depending on your SOAR implementations. At the end of the line
reported incidents or events need to be handled and analyzed.

• Threat intelligence: not every incident or event is a cyber theat. Obtaining
threat intelligence by further analysis of logging provides visibility and
knowledge of what you are dealing with. Is this IP malicious? Is this analyzed

file hash linked to other malicious files? Is this document malware? These
questions can further be handled by threat intelligence.

 5

1 SECURITY OPERATIONS CENTER
A security operations center (SOC) serves as a backend solution providing a general
overview of cyberattacks on your assets. A SOC creates awareness and security against
all kinds of cyber threats as a variety of solutions can be implemented to guarantee

visibility and protection. This paper will provide a general overview of the entire
implementation I have provided and all the lessons learned through the process of
implementation.

1.1 Architectural design

DevOps starts with planning – and creating a general idea of what you SOC will look
like in the end. An architectural design always you to obtain a high-level overview of
your final solution.

While this has eventually become the final solution – the most important aspect of such
an implementation: scalability and performance. A viable choice needs to be made:

local or cloud building? Docker and Kubernetes are your preferred options for cloud.

 6

While one asset could manage this entire stack – a local deployment only seems
viable in case of a Docker / Kubernetes deployment. Virtual machines stacked on
top of each other will only reduce scalability and performance.

Since both aspects are important for future-proofing this solution – the choice was
simple: Google Cloud Platform (cloud). While technically speaking all the docker
containers could be run locally via Docker Desktop – performance is down the drain.
Scalability is also not the greatest option when selecting one, single asset.

This and the obvious advantage of having far more networking- and virtualization
options makes a cloud deployment a very obvious choice.

One major factor needs to be considered when deploying to the cloud: manage your
firewall properly. Four our sock this is technically speaking a perfect testing ground –
open all ports and apply a range of 0.0.0.0/0 IPv4 adresses and your Wazuh agents are
now officially honeypots.

Primary steps for a secure starting environment:

• Deploy a block-all: since the standard Firewall settings basically allow ANY
connection into your machines (especially SSH) – all your deployments basically
become honeypots (even your security assets).

• Remove default-allow-ssh: the only reason why this comes in handy is

because you can SSH through the browser / GCP console into any machine
directly. Do you need this? No – you can utilize the Google Cloud SDK Shell for
local connections + a “hostmachinepublic” IP whitelisting rule.

• Deploy asset-specific ruling: while /24 is not the best solution – it is intended
only for your local machines to access other assets. You can also apply one IP
single-handedly if you have fixed IPs.

Once networking and architecture have met – we are ready to build a SOC. As GCP

offers a royal free-credit budget you can easily include your entire deployment.

 7

1.2 Building blocks

This chapter will have a thorough overview of the mentioned building blocks in the
architectural design. Every single asset will be discussed here.

1.2.1 Red team operations

This is where part of the exploitation starts. Red team operations is a completely
different approach compared to penetration testing. Penetration testing revolves
around finding weaknesses in the defense capabilities. Finding exploitable flaws in a
minimum amount of time and a maximum amount of coverage. Red team operations
has a similar goal: gaining access to data, but this data is pre-determined, for example.

In essence it is an automation tool applying red team testing. It is well-rounded for
thorough response capability testing, SOC readiness and security measures in place.

1.2.1.1 Caldera

MITRE Caldera is a readily-available red team tool in order to provide automated
adversary emulation. Adversary-what? Technically speaking this tool provides you
are deploying an automated penetration tester. It is perfect for training blue teams and

detecting specific threats. Ideal for testing the capabilities of our SOC deployment,
right? Caldera does not only have red teaming capabilities – it also has blue team
capabilities:

• Red team: having a wide range of adversary profiles to your disposal – you can
simulate any kind of real-life cyber-attack. Ideal for thorough defense testing
and learning how to detect cyber threats.

• Blue team: the blue team aspects are even more interesting – it helps you in
detecting gaps in your defenses. Effectively applying TTP (Tactics, Techniques
and Procedures) which can be seen as behavior as a threat actor. Tactics are
high-level descriptions, while techniques are mid-level details and procedures
are thoroughly written-out techniques.

Rather than building your Kali / Parrot OS Linux – red team tools help you in saving
time. Once a specific adversary profile or operation is defined – you are set to launch
this attack on thousands of assets, training and testing all assets simultaneously (as
well as your SOC and security response).

Remember scalability and an increase of performance? Then Caldera is exactly the tool
you are looking for. It operates on an agent-basis making deployment and exploitation
easier than ever.

1.2.2 Hosts / assets

Hosts are primarily your end-user devices… but don’t forget your SOC hosts either.

1.2.2.1 Windows vs Linux

As the primary test-surface end-user devices are at the forefront of your cyber warfare

(security). Mass deployment of hundreds or thousands of end-user devices who each
are different, one by one. OS differences, OS version differences, tooling differences,…
the list is endless. Penetration testers can perform testing on one single device in order
to obtain access, but what about the others? This is the reason included both Windows
OS and Linux OS hosts is important. Each OS behaves differently – let alone OS version
variations. One machine of each OS is included – of which the Linux host is the Caldera
asset itself (not being pentested – only being monitored). Every single asset is

important in having an effective monitoring and defense.

 8

1.2.3 SIEM & Log ingestion

Security Information and Event Management go hand-in-hand with log ingestion in this
deployment. Wazuh has it all – albeit not being the best at log ingestion with a variety
of different options available. Implementation is made easier since Wazuh agents can

collect logs directly forwarding them towards your SIEM solution, Wazuh.

1.2.3.1 Wazuh

Wazuh is an open source security platform providing primarily endpoint- and cloud
security. As it is freely available for anyone to try it becomes an easy pick.
Implementation are available completely out-of-the-box with Wazuh possibilities and
other OpenSearch / ElasticSearch implementations, for example.

A second possibility is an ELK stack with Wazuh: ElasticSearch, Logstash, Kibana (and
Beats). Choosing is losing – either options are very viable. Wazuh vs ELK is in this case
more efficient since all Wazuh comes with all requirements in one deployment. ELK
would just be an addition to the Wazuh Manager in this case, for example.

Wazuh has four main components:

• Wazuh Dashboard: this is effectively your Kibana visualization offering you all
the visual beauty a SIEM has to offer.

• Wazuh Indexer: the index is comparable to ElasticSearch, as it is primarily
build on top of OpenSearch (a different kind of “search”). In essence it is a
search engine for your logs.

• Wazuh Manager: the manager runs all the operations in the background.
Manager provides workers for your task-driven operations. It is effectively this
component which makes Wazuh the SIEM solution itself. All other components
can be swapped around for alternatives.

• Wazuh Agent(s): wazuh agents are comparable to Beat in which they
effectively transport data back to your SIEM solution. Deploying these solutions
on your end-user devices allow you to collect… logs! This provides a log
ingestion solution – of which many others are available.

The combination of the above components effectively build your entire SIEM solution.
Missing either one of those components (and possibly a Database / Cassandra) will
make your SIEM solution less-effective. Each specific process (searching, visualization
and workload) are split into different components allowing for better performance.

1.2.4 SOAR

Security Orchestration, Automation and Response provides a solution for further action
regarding your logs, information and events. Once your SIEM has a good view on all
your asset’s logs your SOAR has the capability to provide actions for further
remediation and response.

1.2.4.1 Shuffle.io

Shuffle.io is a SOAR solution providing automation in order to perform further analysis
or response to an incident. The options are endless here – from threat intelligence to
incident management and incident response. Essentially with any SIEM solution,
shuffle.io creates a webhook to obtain all parameters from an event and parse those
details bit by bit for further actions.

Many other SOAR solutions are available – making Shuffle.io just one of many options.

 9

Shuffle has a variety of components:

• Shuffle frontend: the frontend is plain and simple: it provides an interactive
web page in which you can program further actions.

• Shuffle backend: the backend provides further workload and actions with your
OpenSearch engine and workers. Essentially performing all the tasks in the
background, starting workers and triggering your OpenSearch engine.

• Opensearch: similar to Wazuh Indexer and Elasticsearch – OpenSearch is your
search engine solution for this stack. In an ideal world and deployment – only
one search engine is required for all stacks / assets.

• Shuffle worker(s): shuffle workers are your work horses. They execute all
kinds of tasks in the background which you have programmed in the frontend.

Combining all of the above components provides you with a general SOAR solution.

1.2.5 IM / IR & Threat Intelligence

Incident Management and Incident Response give your incident managers, SOC
analysts and service desk employees something valuable to look at. Once your SIEM
has been fully programmed, and SOAR providing an open door for other applications,

the threat intelligence and incident management can begin.

1.2.5.1 TheHive5

While most information available online revolves around TheHive4 – the open source
solution provided by The Hive Project – TheHive5 has been the newest addition. While
TheHive4 has been fully built by an open source community, TheHive5 is effectively

being developed by a private company called StrangeBee.

Previous versions of TheHive were hereby mostly freely available with full capabilities.
TheHive5 introduced a paywall for certain capabilities only including a free bundle called
the “community” edition.

Either way you are choosing a “free” solution, or a solution starting from thousands of
euros. As pictures speak louder than words – TheHive5 might not be the ideal solution
for everyone. TheHive will be used to create alerts and cases for further analysis.

1.2.5.2 VirusTotal

Technically speaking VirusTotal is implemented within Wazuh, the SIEM solution, but
should be included here as a threat intelligence tool. VirusTotal can analyze IPs and file
hashes in order to obtain a better understanding of what you are dealing with.

Both of the above mentioned use-cases will result in one answer: is it malicious or not?
Integrating VirusTotal can even go thus far you can create an automated response for
malicious files, deleting the malicious file in the process. Thanks to its ideal API solution
you can now integrate VirusTotal both in your SIEM and SOAR solution for threat intel

or automated response.

 10

1.2.5.3 Cortex

Last but not least, Cortex is a threat intelligence solution providing more detail to
security researchers and analysts. Digital forensics and threat intelligence go hand in
hand. As it is open source (developed by The Hive project / StrangeBee) it is freely
available and doing similar tasks compared to VirusTotal. Analyzing IPs, email
addresses, URLS, domain names, files and hashes in order to give your security team
the most valuable information.

While cortex is included in the architecture and on the host machine – it is
unfortunately not fully implemented and integrated in the SOAR. Implementation can
be combined with TheHive5 and your SOAR providing further information to your

incident alerts and cases.

1.3 Implementing your SOC

This chapter will provide further information about the entire implementation of the
mentioned building blocks. Screenshots give you an idea of how the implementation is
working and operating.

1.3.1 Caldera

Caldera is implemented via a docker-compose file, allowing you the ease of
implementation.

Simply git clone the Caldera repository and you are ready to go.

Once you perform the docker compose, or docker-compose command you will have one
machine operating all your red (and blue) teaming actions.

Once you have provided sufficient exposure to be able to access the container you can
open up a web browser on port 8888.

On this web page you are able to login. Credentials are provided
within your deployment folder.

Caldera -> conf -> default.yml or local.yml files.

Once you have obtained your credentials you are ready to perform
actions… but not so fast. Choose between the red or blue user. For
our testing the blue user is better equipped as we want to test our
gaps and defenses.

 11

Secondly you simply need to deploy an agent similar to Wazuh, your SIEM. This can be
just as easy as it sounds. Once you click on the “Agents” tab you can deploy an agent
to any kind of OS.

Once you clicked on “deploy an agent” you can essentially deploy one of three agents.
The explanation provided in the above picture provides a better understanding of the
agent. Each agent communicates in an differently. For our deployment we will utilize
the default agent.

Once you select an agent you need
to provide the correct HTTP / URL
of your Caldera deployment. This
can easily be your localhost, or
your public IP address depending
on the deployment.

Underneath these options you

obtain a thorough overview of how
to deploy your agent in a variety of
ways.

Once the agent is deployed on your host you are ready to run exploits. Running the
exploits and testing the SOC will be a topic at the end of this documentation.

From my own experience the last download option is mostly the best solution
possible for ease of implementation: Deploy as a P2P agent with known peers
included in compiled agent. Simply follow the steps on your desired host:

Returning to the dashboard – your agent is now active and alive:

Ready to test your defenses (and newly implemented SOC). This could, for example, be
one of the installations that could be counted as suspicious and may not be installed if
your SOC and security measures are not allowing this kind of deployment.

 12

1.3.2 Windows (pro) host

The installation of a proper Windows OS is a hassle. Since Windows (for obvious
reasons) does not allow you to deploy a Windows OS docker container (only servers)
you need to have a work-around. Nonetheless the fruits of your labor can be utilized for

an eternity to come.

Simply download a W10 iso file on the official Windows website. Once this ISO is being
download you need to create a local virtual machine and perform a Windows 10
installation. The reason I did not choose W11 is because the VM installation did not
allow me to proceed with the installation due to not meeting “the requirements”. Is this
due to a VM installation, or the VM settings? Hopefully this does not become a blocking

factor for the future!

Once you have created your Windows 10 installation you simply need to export this VM
and create an OVA file. OVA files are readily available VM images as to speak, which
can be integrated in any VM virtualization solution such as the cloud or Vmware.

In this case we created the VM with Oracle VM Virtualbox Manager. Follow the steps
mentioned for an OVA export:

1. Click on File.
2. Select Export Virtual Appliance.
3. Select your Windows host.
4. Leave all settings at the first screen, next.
5. Leave all settings at the second screen, click export. Wait… done!

It is as easy as that. This OVA file is essentially your Windows host in a nutshell
allowing you to deploy Windows 10 hosts to any platform you wish. In this case –
deployment to the cloud (GCP). In order to facilitate this you need a couple of nifty
commands and a new shell. Google even provides thorough documentation themselves:

Import an OVA file | Google Cloud

In GCP you need to create a virtual storage. Go to Cloud Storage and click on

Buckets.

Once arrived here you simply create a new
bucket by clicking on create. Simply follow the
steps – which for this tutorial do not matter at
all. Simply click through the creation process.

Once created you have your bucket name
(mine is bucket-freds0n).

You have two possibilities for uploading: command vs browser. If commands suit you
better (advised for further use of GCP locally) Install Gcloud CLI SDK.

In this case the uploading via command can be a lot easier as it will take some time (up

to half an hour at least). Simply apply the following:

gcloud compute instances import VM_NAME \

--source-uri=gs:PATH_TO_OVA_FILE

This is your upload command – an easy example: gcloud compute instances import
windowshost.ova --source-uri=gs://bucket-freds0n/windows.ova

https://cloud.google.com/compute/docs/import/import-ovf-files#import_ova_file
https://cloud.google.com/sdk/docs/install-sdk#installing_the_latest_version

 13

Sometimes you need to specify your OS version with the -- os flag.

Once you performed the upload – you now have a Windows.ova file in your cloud
bucket. Now you simply need to deploy the .ova on GCP – create a virtual machine!

Simply utilize the gcloud CLI and apply one more command:

gcloud compute machine-images import MACHINE_IMAGE_NAME \

--source-uri=gs:SOURCE_URI \

--os=OS

This is the basic command – but I strongly recommend you to utilize both the –-zone

flag and the –-machine-type command in order to specify your machine settings.

Once both commands have been utilized you officially have a Windows 10 host in the
cloud. Do keep in mind: if you want to utilize RDP (Remote Desktop Protocol) you must
have a Windows Pro version, as this is not available to the Home edition.

1.3.3 Wazuh

Wazuh is our SIEM solution – having two major options for implementation: image
installation or docker deployment. In this case I choose for image installation since
the machine is only going to run Wazuh (performance-wise), allowing you to further
secure your SIEM instance without having to deal with other assets on this VM.

As you could see in the previous example – i imported an OVA file, which makes
deployment easy: download your Wazuh OVA file here!

Simply follow the exact same steps for deployment. Keep in mind this image has a
CentOS (7) OS image. Vi(m) and RPM galore!

Keep in mind – while the standard Wazuh user password is fairly easy to guess, this
user has been disabled for SSH access. Only the local users are able to SSH into this
machine. Resetting your passwords for this instance is a whole different story

compared to the installation. It is recommended to look into it nonetheless.

Once you have provided your Wazuh VM you can connect through a local web browser.
Apply a networking rule which allows your PUBLIC ip address to access “all hosts”. You
could go further only specifying certain ports, but for a test deployment it will become
tedious.

Once you have access to the dashboard you can now deploy agents and start your

SIEM adventures!

For this build I have included my Windows Host and my Caldera host (Linux) with an

agent.

https://documentation.wazuh.com/current/deployment-options/virtual-machine/virtual-machine.html

 14

1.3.4 Shuffle.io

Once the “basics” have been provided, your actual threat intelligence and SOAR
capabilities are becoming tremendously huge. You now have: multiple hosts with log
collecting agents, Caldera for red team activities (testing your SOC deployment) and a
SIEM. Shuffle.io will be the building block between your SIEM and your threat
intelligence / incident management solutions.

Simply look for the newest shuffle docker deployment. Kubernetes deployment is
preferred – but is a lot more tedious to implement and manage. I advise you to look for
the newest shuffle version – since older shuffle versions will look a lot more
differently. Visually the newer version offers more possibilities.

Since the focus of this deployment revolves around scalability and security – my SOAR
solution is separated from all other assets in one VM. SOAR requires a bunch of
resources to handle your SIEM logs – effectively requiring memory and CPU. Once you
implement more solutions you can easily scale horizontally or provide more nodes.

Once you have cloned your desired docker-compose directory simply deploy the
solution on your desired OS:

You will not be dealing with most components – only the frontend. Once networking is
applied and your containers are running it is time to open the web browser with port
https://<ip>:3443.

Here you will be able to build workflows for other solutions. As you can see – I have
created my own Wazuh SIEM webhooks already. This part is more tricky. The first step

in this process is creating a Wazuh / SIEM webhook. This webhook allows you to
collect your SIEM event information.

Simply go to the following GitHub page: Wazuh & Shuffle integration files | GitHub

This handy page offers all you need for this integration. The best implementation
guidance is provided by shuffle themselves: Implement Wazuh & Shuffle integration
now! Keep in mind – this deployment is the Wazuh user, not ossec. These steps are

required for any further implementations.

https://github.com/Shuffle/Shuffle/tree/main/functions/extensions/wazuh
https://shuffler.io/docs/extensions#wazuh
https://shuffler.io/docs/extensions#wazuh

 15

Once you have obtained all configurations you can now test your webhook in shuffle.

Simply click on the Show executions icon in order to view your webhook in action.
For the building block it is best you implement a shuffle tool(s). This nifty little block
will count as a repeater so you can parse the data obtained further towards other
implementations / building blocks. Simply apply the below settings:

Once this is done –
we will have to
implement TheHive5
for our first
integration! Incident
response, here we
come.

 16

1.3.5 TheHive5

Why did i choose TheHive5? TheHive4 is, amongst all, features mostly in every
single Youtube video and implementation document. I can assure you implementation
of a new version is not easy without a lot of guidance – but not impossible. TheHive5
simply has options available in the frontend. Technically speaking you don’t even need
a SOAR anymore since TheHive5 can create its own webhooks towards Wazuh making
ease of implementation even better. Obviously SOAR is still very handy for other tools
such as Cortex and many others.

If you are not up for a challenge and a twist – I highly recommend you to implement
TheHive4 as you will have a lot more comfort and guidance. Here goes nothing!

Simply utilize any of the TheHive4 docker compose deployments out there – for the
easy of this tutorial (and your sake), I have provided my own public GitHub deployment
of this exact implementation: Docker-SOC @ Defreddy | GitHub

This exact same file can be changed into a TheHive4 deployment as well – simply
change the image name. It is that easy. Docker compose and you are ready to roll in
the world of incident response. You can also install a local version of TheHive5 on
your desired host which includes both Misp and Cortex modules. The reason I choose
for docker deployment is due to scalability. If preferred – this definitely is a possibility:
How to install TheHive5 | StrangeBee

A lot of components – only a handful of useful ones:

• Cortex: cortex is included and deployed – but not implemented. While it offers a
lot of capabilities and especially threat intelligence – it is almost as easy as
implementing the TheHive call. I definitely recommend you to give it a proper
look!

• Thehive:5: our famous new TheHive container – we will be utilizing this
container to access the frontend.

• ElasticSearch: basically the same as all other stacks – eventually you should
work towards one ElasticSearch deployment. Multiple ElasticSearch /
OpenSearch deployments are tedious but make sure environments are
separated.

• Databases: MySQL and Cassandra are two databases. I highly recommend you
to look into Cassandra as it is open source, NoSQL and highly praised for its
scalability and availability.

Our main component is definitely TheHive – simply connect to the website:
http://<ip>:9000. This is only the beginning – as we still need to retrieve data from
our SOAR solution Shuffle. You need to login and create new organizations as this is
required for your SOAR integration. Simply create a new organization and add all user
roles. Once you are done adding users you log out and log back in with the OrgAdmin

user role.

While this documentation is from TheHive4 – it is still fairly similar for a quick start:
Quick setup | TheHive4

Once initialized we solely need an API key of this user (or the analyst user). From this
point on it will get even more trickier.

https://github.com/Defreddy/Docker-SOC
https://docs.strangebee.com/thehive/setup/installation/step-by-step-guide/
https://docs.strangebee.com/thehive/setup/installation/step-by-step-guide/

 17

Even the newest Shuffle has a TheHive5 app – but this one doesn’t seem to work (for
now?). Since we are basically connecting with an API – we can simply use API calls. On
this part TheHive5 is very well-documented: API building a request | StrangeBee.

In this deployment we only build an Alert – the first call for a security analyst

something is wrong (without having to look into SIEM).

Simply follow the documentation provided – create your own POST request and select a
Http app:

Select POST here and simply copy-paste the entire “With Curl” JSON string into the
Body element (not the CURL elements!). The CURL elements need to be provided in
the Url part and the Headers part – don’t need a username or any other options
underneath.

Below is an example of a TheHive5 body POST request:

By clicking on the “+” icon next to the Body section you can add new elements from
your Change Me building block. Make sure to connect them both (as displayed

above). Even easier is using the extended window button – highly recommended.

Once your Url, Headers (with Bearer + API token) and Body is ready you can
successfully send your requests towards TheHive.

Click on the Show Execution button at the bottom again and take a look if your POST
request is working. Once this is working – you now have a new alert in TheHive!

https://docs.strangebee.com/thehive/api-docs/#operation/Create%20Alert

 18

Now these incidents / events can be handled by a security analyst for further analysis!

1.3.6 VirusTotal

As VirusTotal is already directly implemented via Wazuh (integrated) – I will not
implement it further within Shuffle – but it perfectly possible just like Cortex and Misp.

VirusTotal’s implementation can easily be implemented within Wazuh for file hash
monitoring. Once malicious files enter your system – VirusTotal will scan the file hash
and compare it to other hashes. If it is malicious it will even remove the file as a whole
due to an automated implementation.

Simply follow the documentation provided by Wazuh themselves: File hash scanning

and malicious file removal all-in-one | Wazuh

Register at VirusTotal for an API key and implement it directly withing Wazuh for ease
of use – or implement it in Shuffle for more SOAR actions / automation.

https://documentation.wazuh.com/current/user-manual/capabilities/virustotal-scan/integration.html
https://documentation.wazuh.com/current/user-manual/capabilities/virustotal-scan/integration.html

 19

1.4 Testing your SOC

This chapter will focus on testing our implemented SOC with our red team tooling (and
a blue team agent) in order to generate new events which will eventually appear in our
Incident Response platform TheHive5. The focus area for this test: SSH brute-forcing /

generating login attempts and a malicious file upload.

1.4.1 Leave the gates right open

From a technical perspective you don’t even have to perform testing yourself via tooling
or Caldera. If you leave the “gates” to your environments right open you will notice the
cyberspace world is a scary place.

If you let the standard firewall
ruling, applied by GCP themselves, do
their “job”, your environments will be
SSH brute forced. As there are a variety
of botnets in the cyberspace and

malicious threat actors (APTs), your
environments will eventually fall for the
SSH brute force attack.

Very effective in testing your
environment – but absolutely NOT
RECOMMENDED. Secure your
environments as quickly as possible –
disable the standard SSH ruling applied
by GCP. The same goes for HTTP and
HTTPS access, also applied by GCP.

 20

As you can clearly see – these “guests” have nothing to seek in your environments.

1.4.2 Putting Caldera to use

As the previous example is effective – we want a more controlled way of testing our
environments which have Wazuh Agent applied.

Caldera is the tool we are looking for. As we already implemented the agent and
selected the blue login – we can create specific abilities for our “threat actor” to exploit
on our windows host.

Take a look at the abilities, defenders and operations in order to obtain a good
understanding of your possibilities. Not limited to only those abilities – as you can
easily create more yourself.

Abilities are possible activities / exploits readily available one
by one.

Defenders are specific profiles with a variety of abilities
applied to them. You can easily utilize on of the defenders
directly to apply a variety of exploits.

Operations are your launch trigger for exploits and
defenders. Here you will launch your attack.

As we will be building a “SSH Brute-force” / login attempts and malicious file transfer
ability ourselves – we need to create a new defender / profile first.

 21

First of all – look for a suitable malicious file uploader. The blue team role has this
readily available. Simply search for the ability “file” and select “stage sensitive files”:

Caldera has a variety of files available for deployment – and Wazuh is currently
configured to investigate and delete any files staged into the
C:\Users\test\Downloads folder. Simply scroll down to the Windows payloads and
choose either psh or cmd. This is one example readily available – but you can also
create your own abilities / exploits.

Simply go to abilities and click on add ability. Our first exploit is uploading a
malicious file! Find more information about this type of exploit – the information is

not of the importance if you want to include a test ability. All fields are mandatory
nonetheless. Include the platform “Windows”, executor PowerShell and the command.

 22

Now click on Save in order to be able to utilize this ability later on. This command
effectively downloads a test malware file eicar_com.zip. Since we have enabled
VirusTotal for our host in the Downloads folder our SOC should have no problem
handling this issue.

The next exploit is nothing special either – triggering login commands on the host in
order to guess users / credentials. You can put this ability on Repeatable – but it will
not trigger very rapidly in succession – only every X seconds. Make sure timeout is as
low as possible for a repeating factor. But don’t go lower than 1 second as the
command will timeout.

Click save and we now have two exploits which we can utilize and run on every single
host in our command! Now select your profile and add the abilities by looking for
their title / name. Once you have added your created abilities it should look like this:

 23

Now our defender / exploit profile is complete and ready for execution. Click on the
Operations tab in order to launch an attack… or exercise. Click on Create Operation,

name your operation and select your adversary profile we just made (above).

Locked and loaded – lets exploit our Windows host! Start! The profile will automatically
start the exploits provided in your defenders profile.

 24

Once the abilities have completed their execution – you can simply look at the status:

It is normal the Login – Fake – Repeat fails. We need to insert a password… but we are
not able to perform that action with our current ability!

Now check your SOC and look for the reports: Go to Wazuh and select Security
Events:

If your SOC is configured correctly – we should see a variety of techniques, tactics and
exploits.

• Malicious file: VirusTotal has scanned the file and removed the file
automatically without manual intervention.

• “Brute force” / login attempts: Due to our attempts at logging in we see
Login Failures arising all over the place.

Thus far we can only conclude this test was a major success! But there is more.
There should be logs generated in our Incident Response tool TheHive5.

 25

Wazuh / SIEM:

Incident Response / TheHive5:

Looks like both applications are correctly logging the events. This concludes our tests in
order to obtain a clear view if our SOC is working.

 26

1.5 Honorable mentions

This chapter will include some integration(s) or valuable additions to the entire SOC
project as a whole. Some have not made it into the final solution but have been
extensively tested for further implementation to no avail, or have a significant impact

on the current build. Not all mentions have an impact on the implementation of the
SOC build – but do have an impact on the general use of your environments.

1.5.1 Close the gates – how do you SSH into a machine

Since we have disabled the standard SSH ruling enabled by GCP we cannot utilize the
handy SSH feature in the web browser anymore.

This is effectively what makes the GCP platform handy – easy access to
SSH. Unfortunately, as we have seen in chapter 1.4, leaving the gates
right open is absolutely not the best idea.

SSH: SSH is now not accessible anymore – or is it?
RDP: RDP is utilized by the Windows (Pro) Host. An important aspect of
this implementation is the fact this is a Windows PRO. Windows Home

does not have the addition of RDP access – which is absolutely not
handy when testing your SOC and endpoint.

We did apply a specific ruling allowing your public IP address access to your
environments. Simply create a rule allowing your public IP address into your machines:

1. Public IP: find your public IP address. The easiest way of doing so is to simply

us Google dorking: “What is my IP”.
2. Firewall ruling: Once you have an understanding of your public IP address we

can set a specific firewall rule.
a. Simply click on VPC Network.
b. Click on Firewall.
c. At the top of your screen you can create

a firewall rule.

d. Now apply the same settings as
mentioned in the screenshot to the right.
You can use a range of IP addresses, also
called a subnet bit, or one single IP
address.

e. Make sure the priority is lower than your
block-all ruling. ACLs work in a simple
way: rules with lower priority come first.

f. If applicable (but for ease of
implementation not required) you can
even select only specific ports and
protocols utilized by your instances. Those
are your ports specifically targeted at your
web port access and obviously SSH.

Once those settings are applied – you
have obtained access to your assets!

 27

1.5.1.1 Accessing GCP assets via SSH

As mentioned before – you are still not able to utilize the SSH function within the GCP
dashboard. There is a workaround – connecting via your Google Cloud SDL local CLI.
Since you have whitelisted your IP address to be able to access “all” ports and protocols

you can also SSH locally into the host.

Windows is RDP – which is fairly straightforward:

1. Download an RDP file.
2. Set the Windows password.
3. Use the RDP file in order to obtain access.

For SSH you need to utilize a specific command or obtain your public SSH keys via the
tool called PuTTy.

1. Open your GCP cloud shell.
2. Make sure you are authenticated:

gcloud auth login --project=YOUR-PROJECT-ID-HERE

3. Look for your instances:

gcloud compute instances list

4. Connect to your selected instance: It is crucial to use the correct zone.
Without –-zone your SSH will abort since it will not connect to the correct zone.

GCP will actually utilize PuTTy in order to create the SSH connection!

gcloud compute ssh USER@instance_name_here --zone NOZE_NAME_HERE

5. Once you are done in your SSH session simply enter exit in your instance shell.

You now have successfully created an SSH connection to one of your instances.

1.5.2 Graylog – log ingestion done better

While WAZUH has agents available – this might not always be the best idea due to
scalability and performance issues later on. When your SIEM has to handle a multitude
of agents and logs – it can get crowded.

It is advised to utilize a separate log ingestion tool such as Graylog. During the
implementation phase I have tried to establish Graylog log ingestion, directly
forwarding the logs towards Wazuh. This creates a better layer between log ingesting
and your SIEM – and helps in scaling your solutions later on.

While perfect in theory – one major issue came into the spotlight: certificate
management. Since Wazuh is talking in secure HTTPS (HyperText Transfer Protocol
Secure) – your graylog also needs to talk in HTTPS. Without proper certificate

management you’re not able to provide a solid connection between your log ingestion
and your SIEM.

An early overview of your docker-compose.yml should include the Graylog instance +
your Wazuh instances (Wazuh Indexer + Wazuh Manager + Wazuh Dashboard).
Noticed how I am clearly a fan of Docker (compose) deployments?

 28

This deployment is your first option – you can definitely select an out of the box
“ova”-style deployment, similar to the Wazuh deployment in this SOC build.

• Docker: building your own image is definitely preferred – but might stir things
up (certificate wise): My graylog-test docker image | Docker Hub

• VM Linux installation: Graylog installation manual | Graylog

After trying a multitude of solutions regarding the docker deployment Wazuh simply
denied all connections coming from Graylog. Graylog effectively was and is running –
but connecting HTTP to HTTPS is not that easy – and transforming Graylog docker

containers to HTTPS is a tough nut to crack.

While Graylog has documentation readily available – and it seemed as easy as it looks
– this definitely did not work out the way I intended it: How to make graylog talk
HTTPS | Graylog

Even community pages stating it is “easy” to build a HTTPS Graylog instance:

Community help - "easy" implementation | Graylog Community

After a multitude of attempts – every single certificate creation failed in which Graylog
effectively had its self-signed certificates but could still not connect to Wazuh. Other
implementations includes your certificate, but the key continuously failed to be created.

The long story short: certificate management is definitely not a piece of cake. In this

case, the docker deployment might not be the best suitable solution. In the end this
was in the early stages of the SOC build. At some point you simply leave it be and not
implement is due to time constraints. Log ingestion, and definitely Graylog, is an
absolute recommendation for your SOC. But make sure the first two building blocks are
the primary focus: log ingestion and SIEM. Once both are working as intended other
building blocks can be added. If this doesn’t work – Wazuh does have log ingestion
available via its excellent Wazuh Agents, forming your plan B.

Since I did not try the VM Linux installation – this might be a more suitable approach.

https://hub.docker.com/repository/docker/freds00n/graylog-test
https://go2docs.graylog.org/5-0/downloading_and_installing_graylog/installing_graylog_operations.html
https://go2docs.graylog.org/5-0/setting_up_graylog/https.html
https://go2docs.graylog.org/5-0/setting_up_graylog/https.html
https://community.graylog.org/t/graylog3-with-https-easy-tutorial/9519

 29

1.5.3 Local docker containers

While clearly a major fan of docker deployments, this SOC project leaves you with one
major question: am I able to run this locally on VMs, or not? In my case the answer
was clearly not thus shifting towards dockerizing was a more logical step.

Here is a GitHub example of how your final solution might look like: Dockerizing your
SOC build locally @ Defreddy | GitHub

With a clear limitation in RAM memory (16 GB) – the entire docker build could run at
rest. Meaning all containers run separately from one another and have no integrations
included yet. Looking at Windows Task Manager the memory was starting to ramp up
at 90% for just spinning all the containers locally.

That being said – dockerizing is preferred over VMs – but comes at a clear
disadvantage: you only have so many ports on your host machine. This is one of the
reasons why MISP, for example, also did not make it into the final solution. Since other
instances had taken HTTP and HTTPS ports already – you couldn’t even access the web
browser via a standard docker-compose.yml deployment. Obviously workaround are
here to stay – change your ports is highly advised if you are planning on running a local

docker deployment.

1.5.3.1 MISP

As mentioned in the above section – MISP is included in most deployments. Both the
local docker deployment and GCP deployment include MISP. The issue was ports. At
this stage it was out of the question for a local docker container.

But why was it not included in the final solution? For some reason the docker-
compose.yml deployment is not processing the UI correctly. While it is included on the
soar-services host machine running all my SOAR services in GCP such as TheHive5 and
Cortex, the web UI was not displaying as intended.

The reasoning behind this is because some additional local settings (aside from your
docker files) need to be adjusted to the correct base url (as you can see in the above
environment variables).

The same goes for MISP vs all other instances. You don’t have to build it with docker:
How to deploy MISP on Ubuntu 20.04 | MISP

https://github.com/Defreddy/SOC-Wazuh-SOAR
https://github.com/Defreddy/SOC-Wazuh-SOAR
https://misp.github.io/MISP/INSTALL.ubuntu2004/

 30

1.5.4 Cortex

Last but not least – Cortex is effectively running in the final SOC solution – but not
included in the process. While perfectly working and initial configuration is included:

Your SOAR (Shuffle) isn’t always handling
data correctly, it seems. When sending
data (specifically non-parsed data resulting
in “null” readings) it needs to be in the
correct format. “Null” cannot be read and
send to other building blocks thus
generating an issue.

Since Wazuh’s parameters are continuously
shifting – null readings are also
continuously presented. Sometimes you
have an IP from your webhook, sometimes
you don’t.

In order to facilitate the IP-part you need to extend the shuffle workflow, similar to how
a VirusTotal implementation would be setup. Instead of parsing the part in your
“repeater” you simply build a new “repeater” in order to parse IPs. This would create /
generate an entirely new flow and essentially an entirely new implementation and
extension for your SOC.

While the implementation is very similar to TheHive5 (repeater + Cortex building
blocks) it can absolutely be a wonderful extension for your SOC.

In the current SOC build hereby Cortex is not integrated in the workflow – but actively
running in the background for a possible future implementation.

For more information – take a look at the beginning of this paper at point 1.5.4.1 –
Cortex.

 31

CONCLUSION….

Building a SOC is definitely hard labor if you want to include a variety of aspects and
integrations. Keeping in mind a SOC needs to be scalable for future implementations
and providing sufficient abilities for vertical / horizontal scaling of single instances

generates an interesting architectural design. The primary focus should be:

• Scalability: make sure your assets can scale horizontally and vertically. Avoid
creating bottlenecks in your final solution by building every single aspect in one
single VM, for example. Take your time to think of a logical architectural design.

• Performance: The entire SOC build requires a different kind of VM for every
single instance. Wazuh and Caldera have requirements of at least 8 GB RAM, for

example. If more aspects or integrations are provided on both of these VMs you
will have to scale horizontally. Scaling horizontally is costly in a cloud
environment and at some point you will reach a bottleneck since you can’t scale
horizontally forever. Mind your performance and think about the future: more
hosts will be scanned by your SIEM, more logging will be integrated, more
workload has to be handled.

• Future-proofing: as mentioned in the previous point – think about the future
of your SOC implementation. Make sure implementations requiring high RAM or
CPU capacity have a dedicated instance or VM. Keep implementations separated
from one another by creating dedicated instances for each instance: make it
logical. Keep in mind the bottleneck of scaling horizontally and obtaining optimal
performance. Eventually the most efficient solution would be a Kubernetes
cluster avoiding VMs altogether. Creating docker containers comes close – but
still requires a variety of VMs separately due to load balancing. Kubernetes
would avoid having to create VMs entirely making them redundant. Similar to
docker deployments your code is essential Infrastructure As Code (IaC) making
deploying, maintenance and future integrations easier than ever.

Taking in mind this primary focus – deploying to the cloud was the most optimal choice.
Dockerizing as much as possible makes deploying easier due to Infrastructure As Code
deployments. IaC makes life easy since you don’t have to manage every single VM
separately. New integration? Build or extend your docker-compose -> push to your

code repository -> (deploy via your CI/CD pipeline) -> your machine is now fully
operational, updated and easily maintainable for future patching and integrations.

Creating a Kubernetes cluster / setup is probably the most efficient way and also the
toughest implementation. Every single aspect is literally code and makes patching,
deploying and integrating easier. Scalability, flexibility and compatibility are major
strengths for a Kubernetes cluster.

Some implementations require a virtual machine, some require a docker container and
some require a Kubernetes cluster. Eventually one will replace the other – but a
“hybrid” combination is essentially here to stay (for now).

The SOC build includes a red teaming tool, SIEM, SOAR and incident response hosted
on GCP. Integrating all the pieces together creates an overall workflow in which cyber
defenders obtain visibility of malicious threat actors abusing your assets. This is a

crucial aspect – if I did not have SIEM enabled I might not even have noticed the brute
force attacks, for example. Obtaining visibility in a modern day environment is crucial.
A SOC is the perfect solution to provide just that.

Protect your dearest assets, obtain visibility, automate security and most definitely
automate the response. Automated workflows blocking malicious IPs or removing
malicious files are a must-have for modern environments but keep in mind your

DevOps / architectural aspects. It is not solely a security implementation.

 32

BIBLIOGRAPHY

/ D. (2019, March 19). Graylog3 with https (easy tutorial). Graylog Community.

https://community.graylog.org/t/graylog3-with-https-easy-tutorial/9519

/ F. (2021, December 14). Integrating Shuffle with Virustotal and TheHive — Open Source

SOAR part 3. Medium. https://medium.com/shuffle-automation/integrating-shuffle-

with-virustotal-and-thehive-open-source-soar-part-3-8e2e0d3396a9

/ F. (2022, April 14). Real-time executions and IoC’s with Shuffle, TheHive and MISP —

Open Source SOAR part 4. Medium. https://medium.com/shuffle-

automation/indicators-and-webhooks-with-thehive-cortex-and-misp-open-source-

soar-part-4-f70cde942e59

/ M. (n.d.). GitHub - mitre/caldera: Automated Adversary Emulation Platform. GitHub.

https://github.com/mitre/caldera

/ S. (n.d.-a). GitHub - Shuffle/Shuffle: Shuffle: A general purpose security automation

platform. Our focus is on collaboration and resource sharing. GitHub.

https://github.com/Shuffle/Shuffle

/ S. (n.d.-b). How do I import a OVA file in GCP. Edureka Community.

https://www.edureka.co/community/58630/how-do-i-import-a-ova-file-in-gcp

/ S. (n.d.-c). Shuffle/functions/extensions/wazuh at main · Shuffle/Shuffle. GitHub.

https://github.com/Shuffle/Shuffle/tree/main/functions/extensions/wazuh

/ T. (n.d.-d). Docker-Templates/README.md at main · TheHive-Project/Docker-Templates.

GitHub. https://github.com/TheHive-Project/Docker-

Templates/blob/main/docker/thehive4-cortex3-misp-shuffle/README.md

/ W. (n.d.-a). Detecting and removing malware using VirusTotal integration.

https://documentation.wazuh.com/current/proof-of-concept-guide/detect-remove-

malware-virustotal.html

 33

/ W. (n.d.-b). How it works - VirusTotal integration · Wazuh documentation.

https://documentation.wazuh.com/current/user-manual/capabilities/virustotal-

scan/integration.html

/ W. (n.d.-c). Wazuh documentation. https://documentation.wazuh.com/current/index.html

BlackPerl. (2021, December 31). SOC Open Source, Build own SOAR with Shuffle, ELK-

TheHive-Cortex-Teams Full Automation, Part 2. YouTube.

https://www.youtube.com/watch?v=Nb9_ahZMC5U

HackerSploit. (2021, October 29). Red Team Adversary Emulation With Caldera. YouTube.

https://www.youtube.com/watch?v=EIHLXWnK1Dw

Import machine images from virtual appliances | Compute Engine Documentation |.

(n.d.). Google Cloud. https://cloud.google.com/compute/docs/machine-

images/import-machine-from-virtual-appliance

Import virtual appliances | Compute Engine Documentation |. (n.d.). Google Cloud.

https://cloud.google.com/compute/docs/import/import-ovf-files

Installing CALDERA — caldera documentation. (n.d.).

https://caldera.readthedocs.io/en/latest/Installing-CALDERA.html

Ishiaku, A. (2022, October 19). Using Wazuh and TheHive for threat protection and

incident response. Wazuh. https://wazuh.com/blog/using-wazuh-and-thehive-for-

threat-protection-and-incident-response/

MISP Web-interface not working as accepted · Issue #3272 · MISP/MISP. (n.d.). GitHub.

https://github.com/MISP/MISP/issues/3272

Setup. (n.d.-a). https://go2docs.graylog.org/5-

0/downloading_and_installing_graylog/installing_graylog_operations.html

Setup. (n.d.-b). https://go2docs.graylog.org/5-

0/downloading_and_installing_graylog/installing_graylog_operations.html

 34

StrangeBee - Docs. (n.d.-a). TheHive 5 Documentation. StrangeBee Docs.

https://docs.strangebee.com/thehive/setup/installation/step-by-step-guide/

StrangeBee - Docs. (n.d.-b). TheHive 5 Documentation. StrangeBee Docs.

https://docs.strangebee.com/thehive/setup/installation/docker/

Taylor Walton. (2021a, November 28). Host Your Own SOAR - Shuffle Install. YouTube.

https://www.youtube.com/watch?v=YDUKZojg0vk

Taylor Walton. (2021b, December 13). Shuffle + Wazuh + TheHIVE + Cortex =

Automation Bliss. YouTube. https://www.youtube.com/watch?v=FBISHA7V15c

Wazuh and Shuffle. (n.d.). Google Groups. https://groups.google.com/g/wazuh/c/yN5PQ-

GpTls

